[go: up one dir, main page]

login
A290991
p-INVERT of (0,0,1,2,3,4,5,...), the nonnegative integers A000027 preceded by one zero, where p(S) = 1 - S - S^2.
5
0, 0, 1, 2, 3, 6, 13, 26, 50, 96, 184, 351, 669, 1278, 2447, 4692, 9004, 17285, 33182, 63687, 122208, 234461, 449774, 862776, 1655010, 3174766, 6090231, 11683285, 22413104, 42997349, 82486280, 158241688, 303570021, 582365698, 1117202719, 2143225358
OFFSET
0,4
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A290890 for a guide to related sequences.
FORMULA
a(n) = 4*a(n-1) - 6*a(n-2) + 5*a(n-3) - 3*a(n-4) + a(n-5) + a(n-6).
G.f.: x^2*(1 - 2*x + x^2 + x^3) / (1 - 4*x + 6*x^2 - 5*x^3 + 3*x^4 - x^5 - x^6). - Colin Barker, Aug 24 2017
MATHEMATICA
z = 60; s = x^3/(1 - x)^2; p = 1 - s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* 0, 0, 1, 2, 3, 4, 5, ... *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290991 *)
PROG
(PARI) concat(vector(2), Vec(x^2*(1 - 2*x + x^2 + x^3) / (1 - 4*x + 6*x^2 - 5*x^3 + 3*x^4 - x^5 - x^6) + O(x^40))) \\ Colin Barker, Aug 24 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 21 2017
STATUS
approved