[go: up one dir, main page]

login
A289296
a(n) = (n - 1)*(2*floor(n/2) + 1).
4
-1, 0, 3, 6, 15, 20, 35, 42, 63, 72, 99, 110, 143, 156, 195, 210, 255, 272, 323, 342, 399, 420, 483, 506, 575, 600, 675, 702, 783, 812, 899, 930, 1023, 1056, 1155, 1190, 1295, 1332, 1443, 1482, 1599, 1640, 1763, 1806, 1935, 1980, 2115, 2162, 2303, 2352, 2499, 2550, 2703, 2756, 2915
OFFSET
0,3
COMMENTS
Summing a(n) by pairs, one gets -1, 9, 35, 77, 135, ... = A033566.
A198442(k) is a member of this sequence if k == 0 or 1 (mod 4). - Bruno Berselli, Jul 04 2017
FORMULA
a(n) = A023443(n) * A109613(n).
a(n) = n^2-1 if n is even and n^2-n if n is odd.
n^2 - a(n) = A093178(n).
From Colin Barker, Jul 02 2017: (Start)
G.f.: -(1 - x - 5*x^2 - x^3 - 2*x^4) / ((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4. (End)
MATHEMATICA
Table[(n - 1) (2 Floor[n/2] + 1), {n, 0, 60}] (* or *) LinearRecurrence[{1, 2, -2, -1, 1}, {-1, 0, 3, 6, 15}, 61]
PROG
(PARI) a(n)=(n\2*2+1)*(n-1) \\ Charles R Greathouse IV, Jul 02 2017
(PARI) Vec(-(1 - x - 5*x^2 - x^3 - 2*x^4) / ((1 - x)^3*(1 + x)^2) + O(x^60)) \\ Colin Barker, Jul 02 2017
(Python)
def A289296(n): return (n-1)*(n|1) # Chai Wah Wu, Jan 18 2023
CROSSREFS
Subsequence of A214297.
Sequence in context: A342555 A075868 A162335 * A310126 A298015 A256906
KEYWORD
sign,easy
AUTHOR
STATUS
approved