[go: up one dir, main page]

login
A289293
Coefficients in expansion of E_6^(1/2).
18
1, -252, -40068, -10158624, -3362961924, -1254502939032, -502480721822688, -211053631376919744, -91717692784641665028, -40892713821496126310364, -18600635229558474625901928, -8597703758971125751979122656
OFFSET
0,2
LINKS
FORMULA
G.f.: Product_{n>=1} (1-q^n)^(A288851(n)/2).
a(n) ~ c * exp(2*Pi*n) / n^(3/2), where c = -3*sqrt(2)*Pi^(3/2) / (16*Gamma(3/4)^8) = -0.2903826839827320330247215149377503818798115... - Vaclav Kotesovec, Jul 02 2017, updated Mar 05 2018
MATHEMATICA
terms = 12;
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E6[x]^(1/2) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)
CROSSREFS
E_k^(1/2): A289291 (k=2), A289292 (k=4), this sequence (k=6), A004009 (k=8), A289294 (k=10), A289295 (k=14).
Cf. A013973 (E_6), A288851.
Sequence in context: A076013 A180886 A078263 * A183507 A203385 A248165
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jul 02 2017
STATUS
approved