[go: up one dir, main page]

login
A278908
Multiplicative with a(p^e) = 2^omega(e), where omega = A001221.
14
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1
OFFSET
1,4
COMMENTS
The number of exponential unitary (or e-unitary) divisors of n and the number of exponential squarefree exponential divisors (or e-squarefree e-divisors) of n. These are divisors of n = Product p(i)^a(i) of the form Product p(i)^b(i) where each b(i) is a unitary divisor of a(i) in the first case, or each b(i) is a squarefree divisor of a(i) in the second case. - Amiram Eldar, Dec 29 2018
LINKS
Xiaodong Cao and Wenguang Zahi, Some arithmetic functions involving exponential divisors, Journal of Integer Sequences, Vol. 13 (2010), Article 10.3.7, eq (20).
Nicusor Minculete and László Tóth, Exponential unitary divisors, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 35 (2011), pp. 205-216.
László Tóth, On certain arithmetic functions involving exponential divisors, II, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 27 (2007), pp. 155-166; arXiv preprint, arXiv:0708.3557 [math.NT], 2007-2009.
Xiangzhen Zhao, Min Liu, and Yu Huang, Mean value for the function t^(e)(n) over square-full numbers, Scientia Magna, Vol. 8, No. 3 (2012), pp. 110-114.
FORMULA
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = Product_{p prime} (1 + Sum_{k>=2} (2*omega(k) - 2^omega(k-1))/p^k) = 1.5431653193... (Tóth, 2007). - Amiram Eldar, Nov 08 2020
MAPLE
A278908 := proc(n)
local a, p, e;
a := 1;
if n =1 then
;
else
for p in ifactors(n)[2] do
e := op(2, p) ;
a := a*2^A001221(e) ;
end do:
end if;
a ;
end proc:
MATHEMATICA
Table[Times @@ Apply[Times, FactorInteger[n] /. {p_, e_} /; p > 1 :> 2^PrimeNu[e]], {n, 105}] (* Michael De Vlieger, Jul 29 2017 *)
PROG
(Scheme) (define (A278908 n) (if (= 1 n) n (* (A000079 (A001221 (A067029 n))) (A278908 (A028234 n))))) ;; Antti Karttunen, Jul 27 2017
(PARI) a(n) = my(f=factor(n)); for (k=1, #f~, f[k, 1] = 2^omega(f[k, 2]); f[k, 2] = 1); factorback(f); \\ Michel Marcus, Jul 28 2017
CROSSREFS
Cf. A001221.
Sequence in context: A369163 A323308 A365549 * A307848 A358260 A368978
KEYWORD
nonn,easy,mult
AUTHOR
R. J. Mathar, Nov 30 2016
STATUS
approved