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RESULTS ON CLASSES

OF FUNCTIONAL EQUATIONS

TRIBUTE TO ANTAL JÁRAI

by János Aczél and Che Tat Ng

While individual noncomposite functional equations in several variables had
been solved at least since d’Alembert 1747 [9] and Cauchy 1821 [8], results on
broad classes of such equations began appearing in the 1950’s and 1960’s. On
general methods of solution see e.g. Aczél [1] and for uniqueness of solutions
Aczél [2, 3], Aczél and Hosszú [6], Miller [20], Ng [21, 22], followed by several
others. – Opening up and cultivating the field of regularization ismainly Járai’s
achievement. By regularization we mean assuming weaker regularity condi-
tions, say measurability, of the unknown function and proving differentiability
of several orders, for whole classes of functional equations. Differentiability of
the unknown function(s) in the functional equation often leads to differential
equations that are easier to solve.

For example, in Aczél and Chung [5] it was shown that locally Lebesgue
integrable solutions of the functional equation

n∑
i=1

fi(x+ λiy) =

m∑
k=1

pk(x)qk(y)

holding for x, y on open real intervals, with appropriate independence between
the functions, are in fact differentiable infinitely many times. The differentiable
solutions are then extracted using induced differential equations. Járai [11]
showed that Lebesgue measurability and ordinary linear independence are suf-
ficient to lead to the same solutions.

Aczél [4] called attention to some unsolved problems in the area of func-
tional equations. One concerned Hilbert’s fifth problem. Járai [15] formulated
a problem that falls within that general call for non-composite functional equa-
tions in multiple variables. Here we exhibit the intricate problem he formulated
and the sequence of results that led to its solution, and make references to his
comprehensive book Járai [16].

Problem. Let T and Z be open subsets of Rs and Rm, respectively, and let
D be an open subset of T × T . Let f : T → Z, gi : D → T (i = 1, ..., n), and
h : D × Zn → Z be functions. Suppose that

f(t) = h(t, y, f(g1(t, y)), ..., f(gn(t, y))) for all (t, y) ∈ D ;

h is analytic ;
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g1, ..., gn are analytic and for each t ∈ T there exists a y for which

(t, y) ∈ D and
∂gi
∂y

has rank s for each i = 1, ..., n.

Is it true that every solution f which is measurable, or has the Baire prop-
erty, is also analytic?

He proposed some incremental steps which may be taken to address the
problem:

(I) Measurability implies continuity.

(II) Almost open solutions are continuous.

(III) Continuous solutions are locally Lipschitz.

(IV) Locally Lipschitz solutions are continuously differentiable.

(V) All p-times continuously differentiable solutions are (p + 1)-times
differentiable.

(VI) Infinitely many times differentiable solutions are analytic.

In [19] Járai and Székelyhidi outlined the above steps and gave a survey on
the advances made. Many historic attributions were made to contributors in
the field. Ng [23] contains results concerning the functional equation

f(x) + g(y) = h(T (x, y))

with given T . It is shown that under suitable assumptions, local boundedness
of f implies the continuity of g.

Járai published a sequence of papers obtaining impressive results about that
problem. [12] contains results regarding (I), (II), (IV), (V), and partially about
(III). Step (III) is obtained for one variable in [13] and is generalized in [14].
In [15] Járai obtained the following result on the problem formulated above.

Theorem. Suppose that the conditions of the Problem are satisfied and
suppose that f has locally essentially bounded variation. Then f is infinitely
many times differentiable.

[16] contains, in Section 1, a summary account about the problem. We
include some of it (abbreviated).

Theorem. (i) If h is continuous and the functions gi are continuously
differentiable then every solution f , which is Lebesgue measurable or has Baire
property, is continuous.

(ii) If h and gi are p times continuously differentiable, then every almost
everywhere differentiable solution f is p times continuously differentiable.
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(iii) If h and gi are max{2, p} times differentiable and there exists a com-
pact subset C of T such that for each t ∈ T there exists a y ∈ T satisfying
gi(t, y) ∈ C, besides the other stated rank condition on gi, then every solution
f , which is Lebesgue measurable or has the Baire property, is p times continu-
ously differentiable (1 ≤ p ≤ ∞; i = 1, ..., n).

Járai has deep insights and knowledge in the field of real analysis. He used
the theorems reported in Giusti [10] swiftly, made fine and technical adaptations
when necessary to get the above strong results.

In his book [16] many regularization theorems by him and others are assem-
bled in a well organized way. For the convenience of the readers he has given
several examples to illustrate how his general results can be applied to known
functional equations. He devised and proved a general transfer principle which
makes it possible to apply theorems concerning problems having only one un-
known function also for cases with several unknown functions. A good example
amongst many is the following

Theorem. Let α �= β be fixed real numbers, f, g1, g2 : ]0, 1[→ R. Suppose
that the functional equation

f(x) + (1− x)αg1(u/(1− x)) + (1− x)βg2(u/(1− x))

= f(u) + (1− u)αg1(x/(1− u)) + (1− u)βg2(x/(1− u))

is satisfied for all x, u ∈ ]0, 1[ with x + u ∈ ]0, 1[. If the functions f, g1, g2 are
Lebesgue measurable then they are C∞.

He offered readers some details which precede the applications of his reg-
ularization theorems. The functional equation has its source in the study of
symmetric divergences and distance measures and the differentiable solutions
have been reported by Sander [25]. A more elaborate example is their joint
work in [18] connected to the Weierstrass sigma function (as in [7]). They
extended the results of M. Bonk [7] on the functional equation

χ(u+ v)φ(u− v) =

k∑
ν=1

fν(u)gν(v)

and treated it under weaker regularity assumptions.

Section 16 of the book contains results on (VI), analyticity. Járai’s results as
well as those of Páles [24] are covered. In Járai, Ng and Zhang [17] a composite
type functional equation is solved under different regularity assumptions. The
uniqueness theorem of Ng [22] is applied to obtain continuous solutions in one
case, and the differentiation steps are used to extract the differentiable solutions
in another case.

Acknowledgement. We thank the referee for helpful comments.
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ANTAL JÁRAI HAS TURNED 60

by Zoltán Daróczy

Antal Járai was born on 25th August, 1950 in Biharkeresztes, Hungary.
He attended secondary school in Debrecen. Then he studied mathematics at
Kossuth Lajos University (Debrecen) between 1969–74. After graduation he
started his professional career at the Department of Analysis in the Institute
of Mathematics at Kossuth University. In 1976 he wrote his thesis ”On Mea-
surable Solutions of Functional Equations” and received doctoral degree. Then
he held various positions as a researcher at the University in Debrecen. In the
period 1992–1997 he had a research position at the University of Paderborn
(Germany). Since 1997, he has been a professor of Eötvös Loránd Univer-
sity (Budapest). He earned candidate degree in 1990 and the doctor of the
Hungarian Academy of Sciences degree in 2001.

Antal Járai’s scientific activities cover a wide range of various fields. He
himself considers the following areas as his fields of interest:

• functional equations,

• measure theory,

• system programming,

• computational number theory and computer algebra,

• generalized number systems.

The list above demonstrates that Antal Járai is both modern mathematician
and computer scientist at the same time.

The writer of this laudation, having been his teacher and scientific supervi-
sor in the past and being his friend and colleague now, is biased in his appre-
ciation. I remember that student Járai was characterized by the say ”his brain
like a piece sponge, as it absorbs everything; on the other hand, it is sharp
like a knife as he is fast and creative in addressing any problem”. Antal Járai
is considered to be a valuable member of the Debrecen school of functional
equations, whose scientific results cannot be missed by experts in this field.
Furthermore, the years spent in Paderborn play a significant role in his scien-
tific contribution to computer science, which has ripened by now and so earned
worldwide reputation. Besides these scientific achievements, his work as an ed-
ucator is admirably colourful and successful. His textbooks and course-books
are widely recognized in Hungary.

Most of his scientific research work concerns the theory of functional equa-
tions. In the paper ”Tribute to Antal Járai”, János Aczél and Che Tat Ng give
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a due appreciation of his scientific achievements in this field of mathematics. In
measure theory he has outstanding results concerning the invariant extension
of the Haar-measure and generalizations of the Steinhaus theorem. He did pi-
oneer work in the study of interval filling sequences and in complex and higher
dimensional number systems.

He started to do research in computer science as early as 1982. It is appro-
priate to say that besides his extensive theoretical knowledge of mathematics,
he has also demonstrated his talent in solving practical problems. He wrote
more than twenty system programs as an entrepreneur. The included trans-
lation programs, database management systems, floating point arithmetic al-
gorithms and time sharing systems. His programs, some of which proved to
be the fastest on the given hardware all over the world, have been installed at
about hundred sites.

During the years he spent at the Universität GH Paderborn (1992–1997) as
a member of Karl-Heinz Indlekofer’s team, they achieved more than ten world
records. Elaborating on and continuing these researches, his team in Hungary
has succeeded in gaining five more world records. Working with highly efficient
computational methods and elliptic curves for prime testing, he has reached
outstanding results in computer algebra as well.

Antal Járai is a renaissance figure of our age. He is interested in physics,
chemistry and electronics as well as in certain field of geology and biology. Most
of all he is a prominent developer of mathematics and computer science.

His sons, Antal and Zoltán, born in his first marriage, are stepping in their
father’s footsteps. He has a daughter, Mariann, born in his second marriage.
In difficult times, his wife, Ilona assisted him in his enterprise as a skilled
software developer. It is a pleasant personal memory from the summer of
1985, when two couples (them and us) were travelling together to the 23rd

International Symposium on Functional Equations (ISFE) in Gargnano, Italy
(June 2nd − 11th) in a Trabant car. On the way there and back we stayed in
tents at camping sites.

Antal Járai has been granted the following awards: Pro Universitate (Kos-
suth Lajos University, Debrecen, 1974), ”Grünwald Géza Award” (Bolyai Math-
ematical Society, 1979), Ministry award of Ministry of Culture (1990), ”For
outstanding contribution to the conference” (ISFE, 1994), Award of Hungar-
ian Academy of Science (2000), ”Kalmár Award” (2008), Knight Cross, the
Order of Merit of the Hungarian Republic (2010).

My dear student, friend and colleague, happy 60th birthday to you. I also
wish you and your family good health and spirits.
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[52] Modern alkalmazott anaĺızis, (a) Typotex, Budapest, 2007, 661 oldal.
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Abstract. Some analogues of the theorem of Daboussi over the set of
Gaussian integers are investigated.

1. Introduction

Let c, c1, c2, . . . ,K,K1,K2, . . . be positive constants, not necessarily the
same at every occurrence. Let M be the set of complex valued multiplica-
tive functions and M1 be the set of those g ∈ M for which additionally
|g(n)| ≤ 1 (n ∈ N) holds as well. Let e(α) := e2πiα.

A famous theorem of H. Daboussi published in the paper written jointly
with H. Delange in [2] asserts that

(1.1) sup
f∈M1

∣∣∣∣∣∣ 1x
∑
n≤x

f(n)e(nα)

∣∣∣∣∣∣ = �x → 0 (x→∞),
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whenever α is an irrational number. This famous theorem has been generalized
in different aspects in [1], [3]–[20]. In [2] the following assertion was proved:

Let S be an arithmetical function satisfying the following conditions:

(i) S is almost-periodic B1,

(ii) the Fourier series of S is λ +
∑

λνe(ανn), where all the αν are
irrational.

Then, as x tends to infinity, we have

sup
f∈M1

∣∣∣∣∣∣ 1x
∑
n≤x

f(n)S(n)− 1

λ

∑
f(n)

∣∣∣∣∣∣ ≤ �x(S),

�x(S)→ 0 as (x→∞).

In [20] the following theorem is proved.

Let k ≥ 1 be fixed, J1, . . . , Jk ⊆ [0, 1) be such sets which are the union
of finitely many intervals. Let P1(x), . . . , Pk(x) be non-constant real valued
polynomials,

Qm1,...,mk
(x) = m1P1(x) + · · ·+mkPk(x)

for m1, . . . ,mk ∈ Z.

Assume that Qm1,...,mk
(x)−Qm1,...,mk

(0) has at least one irrational coeffi-
cient for every m1, . . . ,mk ∈ Z, except when m1 = . . . = mk = 0.

Let
S := {n | n ∈ N, {Pl(n)} ∈ Jl, l = 1, . . . , k}.

Let λ be the Lebesgue measure.

Theorem A. Under the conditions stated for P1, . . . , Pk, J1, . . . , Jk we have

(1.2) sup
g∈M1

∣∣∣∣∣∣∣
1

x

∑
n≤x
n∈S

g(n)− λ(J1) . . . λ(Jk)

x

∑
n≤x

g(n)

∣∣∣∣∣∣∣ = τx,

τx → 0 as x→∞.

By using the same method and Theorem B we can prove

Theorem 1. Let J1, . . . , Jk, P1, . . . , Pk, S be as above. Let P be a non-
constant real valued polynomial.

Let Rm0,m1,...,mk
(x) = m0P (x) +Qm1,...,mk

(x). Assume that

Rm0,m1,...,mk
(x)−Rm0,m1,...,mk

(0)
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has at least one irrational coefficient for every m0,m1, . . . ,mk except the case
when m0 = m1 = . . . = mk = 0.

Then

(1.3) sup
g∈M1

1

x

∣∣∣∣∣∣∣
∑
n≤x
n∈S

g(n)e(P (n))

∣∣∣∣∣∣∣ = �x → 0, as x→∞.

�x may depend on S and on P .

Theorem B. (See [7].) (1.3) is true, if S = N.

Applying Theorem A for g(n) = 1 we obtain that

1

x
#{n ≤ x | n ∈ S} → λ(J1) . . . λ(Jk).

From Theorem 1, by using Weyl’s criterion for uniformly distributed se-
quences we get

Theorem 2. Let J1, . . . , Jk, P, P1, . . . , Pk, S as in Theorem 1. Let A be
the set of additive arithmetical functions, S = {t1, t2, . . .}, tj < tj+1 (j =
= 1, 2, . . .), ξn(f) := f(tn) + P (tn) (n = 1, . . .),

(1.4)

ΔN (f | S) :=

:= sup
[α,β)⊆[0,1)

∣∣∣∣ 1N#{ξn(f) mod 1 ∈ [α, β], n ∈ N} − (β − α)

∣∣∣∣ .
Then

(1.5) sup
f∈A

ΔN (f |S) = �N → 0 as N →∞.

�N may depend on S.

Let Nk be the set of the integers the number of the prime power factors
of which is k. Let Nk(x) be the size of n ≤ x, n ∈ Nk. In our paper [10] we
proved

Theorem C. Let 0 < δ(< 1) be an arbitrary constant, and α be an irra-
tional number. Then

(1.6) lim
x→∞ sup

δ≤ k
log log x≤2−δ

sup
f∈M1

1

Nk(x)

∣∣∣∣∣∣∣
∑
m≤x

m∈Nk

f(m)e(mα)

∣∣∣∣∣∣∣ = 0.
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The proof depends on an important assertion due to Dupain, Hall, Tenen-
baum [4], namely that

(1.7) sup
k

log log x≤2−δ

1

Nk(x)

∣∣∣∣∣∣∣
∑
m≤x

m∈Nk

e(mα)

∣∣∣∣∣∣∣→ 0 as x→∞.

Theorem 3.

1.) Let P (n) = αn, Pj(n) = αjn, (j = 1, . . . , k), J1, . . . , Jk and S as
earlier. Assume that mα+m1α1+ · · ·+mkαk is irrational for every nontrivial
choice of m,m1, . . . ,mk. Let Sk(x) = #{n ≤ x | n ∈ Nk, n ∈ S}.

Then

(1.8) lim
x→∞ sup

δ≤ k
log log x≤2−δ

sup
f∈M1

1

Sk(x)

∣∣∣∣∣∣∣
∑
n≤x

n∈Nk∩S

f(n)e(nα)

∣∣∣∣∣∣∣ = 0.

2.) Let P1, . . . , Pk, J1, . . . , Jk and S as earlier. Assume that m1α1 + · · · +
+mkαk is irrational for every nontrivial choice of m1, . . . ,mk. Then

(1.9) lim
x→∞ sup

δ≤ k
log log x≤2−δ

sup
f∈M1

∣∣∣∣∣∣∣
1

Sk(x)

∑
n≤x

n∈Nk∩S

f(n)− 1

Nk(x)

∑
n≤x

n∈Nk

f(n)

∣∣∣∣∣∣∣ = 0.

Since the Theorems 1, 2, 3 can be deduced from already published papers
by the method used in [20], we omit the proofs of them. In the next section we
formulate and prove Theorem 4.

2.

Let Z[i] be the ring of Gaussian integers, Z∗[i] = Z[i] \ {0} be the multi-
plicative group of nonzero Gaussian integers.

Let χ be such an additive character on Z[i], for which χ(1) = e(A), χ(i) =
= e(B). Let K1 be the set of multiplicative functions g : Z∗[i] → C satisfying
|g(α)| ≤ 1 (α ∈ Z∗[i]). Let W be the union of finitely many convex bounded
domain in C. In our paper [11] written jointly with N.L. Bassily and J.-M. De
Koninck we proved
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Theorem D. Assume that at least one of A or B is irrational. Then

(2.1) lim
x→∞ sup

g∈K1

1

|xW |

∣∣∣∣∣∣
∑

β∈xW

g(β)χ(β)

∣∣∣∣∣∣ = 0.

Let I = [0, 1) × [0, 1), S = S1 ∪ . . . ∪ Sr ⊆ I, where Sj are domains the
boundary of which is a rectifiable continuous curve for every j. For some small
Δ > 0 let

S(−Δ) = {(u, v) | [u−Δ, u+Δ]× [v −Δ, v +Δ] ⊆ S},
S(+Δ) = {(u, v) | [u−Δ, u+Δ]× [v −Δ, v +Δ] ∩ S �= 0}.

Let

(2.2) f(x, y) =

{
1, if (x, y) ∈ S

0, if (x, y) ∈ I \ S,

and let us extend the definition of f over R2 by

f(x+ k, y + l) = f(x, y) (k, l ∈ Z).

Let
∑

m,n∈Z

am,ne(mx+ ny) be the Fourier-series of f(x, y). Let Δ > 0 be so

small that S(+Δ) ⊆ I, and

(2.3) fΔ(x, y) :=
1

(2Δ)2

Δ∫
−Δ

Δ∫
−Δ

f(x+ u)f(y + v) du dv.

Since

κ(n) :=
1

2Δ

Δ∫
−Δ

e(nu) du =
1

4πinΔ
(e(nΔ)− e(−nΔ))

if n �= 0, and κ(0) = 1, therefore the Fourier coefficients bm,n of fΔ are

bm,n = am,nκ(m) · κ(n).

Assume that for some δ > 0,

(2.4) |am,n| ≤ c

(
1

1 + |m|δ

)(
1

1 + |n|δ

)
,

c is a constant. Thus

(2.5) |bm,n| ≤ |am,n|min

(
1,

2

|m|Δ

)
min

(
1,

2

|n|Δ

)
.
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It is clear that fΔ(u, v) = 1 if (u, v) ∈ S(−Δ), and fΔ(u, v) = 0 if (u, v) ∈
∈ I \ S(+Δ).

Let z = u+ iv ∈ C. The fractional part of z is defined as {z} = {u}+ i{v}.

Theorem 4. Let γj = ξj + iηj (j = 1, . . . , k) be distinct nonzero numbers,
T = {β | β ∈ Z[i], {γjβ} ∈ S, j = 1, . . . , k}. Assume that S satisfies the condi-
tions stated above. Assume that ξ1, . . . , ξk, η1, . . . , ηk are linearly independent
over Q. Then

(2.6) lim
x→∞ sup

g∈K1

∣∣∣∣∣∣∣
1

|xW |
∑

β∈xW
β∈T

g(β)−
ak0,0
|xW |

∑
β∈xW

g(β)

∣∣∣∣∣∣∣ = 0.

Here a0,0, = λ(S) =Lebesgue measure of S.

Theorem 5. Let S, γj , T be as above, χ(u + iv) = e(Au + Bv). Let L be
the lattice {m1ξ1 + · · ·+mkξk + n1η1 + · · ·nkηk}. Assume that either nA �∈ L
for n ∈ Z \ {0} or nB �∈ L for n ∈ Z \ {0}. Then

(2.7) lim
x→∞ sup

g∈K1

∣∣∣∣∣∣∣
1

|xW |
∑

β∈xW
β∈T

g(β)χ(β)

∣∣∣∣∣∣∣ = 0.

Proof of Theorem 4. First we observe that

#{β ∈ xW | {γjβ} ∈ S(+Δ) \ S(−Δ)} ≤(2.8)

≤ c1λ(S
(+Δ) \ S(−Δ))λ(xW ),

and that λ(S(+Δ) \ S(−Δ)) ≤ c2Δ. c2 may depend on S. Let F (u + iv) =
= f(u, v), FΔ(u+ iv) = fΔ(u, v). In this notation∑

β∈xW
β∈T

g(β) =
∑

β∈xW

g(β)F (βγ1) . . . F (βγk) =

=
∑

β∈xW

g(β)FΔ(βγ1) . . . FΔ(βγk) +O(Δλ(xW )).
(2.9)

Let K be so large that

(2.10)
∑
n∈Z

∑
|m|≥K

|bm,n|+
∑

|n|≥K

∑
m

|bm,n| ≤ Δ.

Since
∑

bm,n is absolutely convergent, therefore such a K exists. (See (2.5).)
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Let

(2.11) F
(K)
Δ (u+ iv) =

∑
|m|≤K
|n|≤K

bm,ne(mu+ nv).

Since
|FΔ(u+ iv)− F

(K)
Δ (u+ iv)| ≤ Δ,

from (2.9) we have∑
β∈xW
β∈T

g(β) =
∑∗

m1,...,mk
n1,...,nk

bm1,n1 . . . bmk,nk

∑
β∈xW

g(β)χm1,...,nk
(β).

The star indicates that we sum over those mj , nj for which |mj | ≤ K, |nj | ≤
≤ K (j = 1, . . . , k), where χm1,...,nk

(β) = e(λReβ + μImβ),

λ =

k∑
j=1

(mjξj + njηj), μ =

k∑
j=1

(njξj −mjηj).

From the assumption of the theorem we have that either λ or μ is irrational,
consequently, by Theorem D we have that∑

β∈xW
β∈T

g(β) = ak0,0
∑

β∈xW

g(β) + ox(|xW |) +O(Δ|xW |).

Hence we obtain that

lim
x→∞ sup

g∈K1

∣∣∣∣∣∣∣
1

|xW |
∑

β∈xW
β∈T

g(β)−
ak0,0
|xW |

∑
β∈xW

g(β)

∣∣∣∣∣∣∣ ≤ cΔ.

Since Δ is arbitrary, therefore our theorem is true. �

The proof of Theorem 5 is similar. We omit it.
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ON MULTIPLICATIVE FUNCTIONS

WITH SHIFTED ARGUMENTS

Bui Minh Phong (Budapest, Hungary)

Dedicated to Professor Antal Járai on his 60th anniversary

Abstract. It is proved that for given integers a > 0, c > 0, b, d with
ad − cb �= 0 there exists a constant η > 0 with the following property:
If unimodular multiplicative functions g1, g2 satisfy |g1(p) − 1| < η and
|g2(p)− 1| < η for all p ∈ P, then

lim inf
x→∞

1

x

∑

n≤x

|g1(an+ b)− Γ g2(cn+ d)| = 0

may hold with some Γ ∈ C \ {0} if g1(n) = g2(n) = 1 for all positive
integers n ∈ N, (n, ac(ad− cb)) = 1.

1. Introduction

An arithmetic function g(n) �≡ 0 is said to be multiplicative if (n,m) = 1
implies that

g(nm) = g(n)g(m)

and it is completely multiplicative if this relation holds for all positive integers
n and m. LetM andM∗ denote the class of all complex-valued multiplicative
and completely multiplicative functions, respectively. A function g is said to be

The Project is supported by the European Union and co-financed by the European Social
Fund (grant agreement no. TAMOP 4.2.1./B-09/1/KMR-2010-0003).
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unimodular if g satisfies the condition |g(n)| = 1 for all positive integers n. In
the following we shall denote by M(1) and M∗(1) the class of all unimodular
functions g ∈M and g ∈M∗, respectively.

Let A,A∗ be the set of real valued additive and completely additive func-
tions, respectively. As usual, let P, N, Z, R, C be the set of primes, positive
integers, integers, real and complex numbers, respectively. For each real num-
ber z we define ‖ z ‖ as follows:

‖ z ‖= min
k∈Z

| z − k | .

A. Hildebrand [1] proved the following

Theorem A. There exists a positive constant δ with the following property.
If g ∈ M∗(1) and |g(p) − 1| ≤ δ holds for every p ∈ P, then either g(n) = 1
for all n ∈ N identically, or

lim inf
x→∞

1

x

∑
n≤x

|g(n+ 1)− g(n)| > 0.

By using the ideas of Hildebrand [1] and himself, I. Kátai [2] proved the
following generalization:

Theorem B. Let g ∈ M∗(1). There exist positive constants δ and β < 1
with the property: If

lim sup
x→∞

∑
xβ<p<x

|g(p)− 1|
p

< δ

and

lim inf
x→∞

1

x

∑
x
2≤n≤x

|g(n+ 1)− g(n)| = 0,

then g(n) = 1 for all n ∈ N identically.

Our purpose in this paper is to prove the following

Theorem. Let a, c ∈ N, b, d ∈ Z with ad− cb �= 0. There exists a constant
η > 0 with the following property:

If g1, g2 ∈M(1), |g1(p)− 1| < η and |g2(p)− 1| < η for all p ∈ P, then

lim inf
x→∞

1

x

∑
n≤x

|g1(an+ b)− Γg2(cn+ d)| = 0
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may hold with some Γ ∈ C \ {0} if

g1(n) = g2(n) = 1 for all n ∈ N, (n, ac(ad− cb)) = 1.

As a direct consequence we can formulate the next

Corollary. Let a, c ∈ N, b, d ∈ Z with ad− cb �= 0. There exists a constant
η > 0 with the following property:

If f1, f2 ∈ A, ‖f1(p)‖ < η and ‖f2(p)‖ < η for all p ∈ P, then

lim inf
x→∞

1

x

∑
n≤x

‖f1(an+ b)− f2(cn+ d)−Δ‖ = 0

may hold with some Δ ∈ R if

‖f1(n)‖ = ‖f2(n)‖ = 0 for all n ∈ N, (n, ac(ad− cb)) = 1.

We note that I. Kátai [2] has conjectured that if

lim
x→∞

1

x

∑
n≤x

‖f(n+ 1)− f(n)‖ = 0,

then there is a real number λ ∈ R such that

‖f(n)− λ log n‖ = 0 for all n ∈ N.

This conjecture remains open.

2. Lemmata

N. M. Timofeev [3] proved the following assertion (see [3], Lemma 1):

Lemma 1. Suppose that f1(n) and f2(n) are multiplicative with |f1(n)| ≤ 1
and |f2(n)| ≤ 1 that satisfy the condition

(2.1)
∑
p≤x

(
|f1(p)− 1|+ |f2(p)− 1|

) log p
p

≤ ε(x) log x,
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where ε(x) is a decreasing function that approaches zero as x → ∞, but
ε(x)

√
log x approaches infinity as x→∞, and let a > 0, b, c > 0, d, aj , bj, δj

(j = 1, 2) be integers with

a = δ1a1, b = δ1b1, c = δ2a2, d = δ2b2,

(a1, b1) = 1, (a2, b2) = 1, Δ = a1b2 − a2b1 �= 0.

Then

(2.2)
1

x

∑
n≤x

f1(an+ b)f2(cn+ d) =
∏
p≤x

ωp(f1, f2) +O
(√

ε(x)
)
,

where for p � |a1a2Δ

ωp(f1, f2) =

(
1− 2

p

)
f1

(
pαp(δ1)

)
f2

(
pαp(δ2)

)
+

+

∞∑
r=1

1

pr

(
1− 1

p

)[
f1

(
pr+αp(δ1)

)
f2

(
pαp(δ2)

)
+ f1

(
pαp(δ1)

)
f2

(
pr+αp(δ2)

)]
;

if p|a1, but p � |(a1, a2), then

ωp(f1, f2) =

[
f2

(
pαp(δ2)

)
+

∞∑
r=1

f2

(
pr+αp(δ2)

) 1

pr

](
1− 1

p

)
f1

(
pαp(δ1)

)
;

if p|a2, but p � |(a1, a2), then

ωp(f1, f2) =

[
f1

(
pαp(δ1)

)
+

∞∑
r=1

f1

(
pr+αp(δ1)

) 1

pr

](
1− 1

p

)
f2

(
pαp(δ2)

)
;

if p|Δ, but p � |a1a2, then

ωp(f1, f2) =

(
1− 1

p

)[ ∑
0≤r≤αp(Δ)−1

f1

(
pr+αp(δ1)

)
f2

(
pr+αp(δ2)

) 1

pr
+

+ f1

(
pαp(Δ)+αp(δ1)

)
f2

(
pαp(Δ)+αp(δ2)

)(
1− 1

p

)−1(
1− 2

p

)
+

+
∑
r≥1

1

pr+αp(Δ)

(
f1

(
pr+αp(δ1)

)
f2

(
pαp(δ2)+αp(Δ)

)
+

+ f1

(
pαp(δ1)+αp(Δ)

)
f2

(
pr+αp(δ2)

))]
;

if p|(a1, a2), then

ωp(f1, f2) = f1

(
pαp(δ1)

)
f2

(
pαp(δ2)

)
.

Here αp(n) is the largest integer α such that pα divides n.
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Analyzing the proof of Lemma 1, one can see that it remains true in the
following form:

Lemma 1′. Assume that in the notations of Lemma 1, instead of (2.1)

(2.3)
∑
p≤x

(
|f1(p)− 1|+ |f2(p)− 1|

)
log p

p
≤ δ log x

if x > x0(δ). Then

(2.4) lim sup
x→∞

∣∣∣∣ 1x ∑
n≤x

f1(an+ b)f2(cn+ d)−
∏
p≤x

ωp(f1, f2)

∣∣∣∣ ≤ C
√
δ,

where C is a constant that may depend only on a, b, c, d.

3. Proof of the theorem

Assume that the conditions of Theorem hold and

(3.1)
∑
n≤xν

|g1(an+ b)− Γg2(cn+ d)| < ενxν ,

where εν ↘ 0, xν ↗∞. From (3.1) it is clear that |Γ| = 1 and∑
n≤xν

|Γg1(an+ b)g2(cn+ d)− 1| < ενxν .

Since
|1− z|2 = 2(1− Re z) ≤ 2|1− z| when |z| = 1,

we have∑
n≤xν

| Γg1(an+ b)g2(cn+d)−1|2 ≤ 2
∑
n≤xν

|Γg1(an+ b)g2(cn+d)−1| < 2ενxν ,

which implies

(3.1)′ Re 2Γ
∑
n≤xν

g1(an+ b)g2(cn+ d) ≥ 2(1− εν)xν .

Let us apply Lemma 1′ with f1 = g1, f2 = g2 and δ = 2η. We obtain that

(3.2)
∏
p≤x

|ωp(g1, g2)| ≥ 1− C
√
δ.
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Assume that δ is small, C
√
δ < 1. Then, from (3.2), we have∑

p∈P

(
1− |ωp(g1, g2)|2

)
<∞.

If (p, acΔ) = 1, then αp(δ1) = αp(δ2) = 0 and

ωp(g1, g2) =

(
1− 2

p

)
+

(
1− 1

p

)
1

p

(
g1(p) + g2(p)

)
+O

(
1

p2

)
= 1 + ξp,

where

ξp =
1

p

[
(g1(p)− 1) + (g2(p)− 1)

]
+O

(
1

p2

)
.

Therefore
|ωp(g1, g2)|2 = 1 + ξp + ξp + |ξp|2,

and so

∑
p∈P

(
1− |ωp(g1, g2)|2

)
= 2Re

⎧⎨⎩∑
p∈P

1− g1(p)

p
+
∑
p∈P

1− g2(p)

p

⎫⎬⎭+O(1).

Since

Re (1−g1(p)) ≥ 0, Re (1−g2(p)) ≥ 0 and |1−z|2 = 2(1−Re z) when |z| = 1,

therefore

(3.3)
∑
p∈P

|1− gj(p)|2
p

<∞, j = 1, 2.

Let

σj(x) =
∑

√
x≤p≤x

|1− gj(p)|2
p

.

From (3.3) we have ∑
l=0,1,...

σj(x
1/2l) < c,

where c is a constant. Since∑
p≤x

1

p
= log log(x) + C +O

(
1

log x

)
where C = 0.2615...,

by applying Cauchy’s inequality, we have∑
√
x≤p≤x

|1− gj(p)| log p
p

≤ log x
∑

√
x≤p≤x

1
√
p

|1− gj(p)|√
p

≤
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≤ log x

⎛⎝ ∑
√
x≤p≤x

1

p

⎞⎠1/2⎛⎝ ∑
√
x≤p≤x

|1− gj(p)|2
p

⎞⎠1/2

≤ c1 log x
√
σj(x).

Therefore∑
2≤p≤x

|1− gj(p)| log p
p

≤ c1
∑

2l≤log x

(
log x1/2l

)√
σj(x/2l) = c1 log xΘj(x),

where

Θj(x) =
∑

2l≤log x

√
σj(x/2l)

2l
.

It is clear that Θj(x)→ 0 (x→∞). Let

εj(y) = max
x≥y

Θj(x) and ε(y) = ε1(y) + ε2(y).

Thus (2.1) holds with this ε(x).

From (3.1)′ and (2.2) with f1 = g1 and f2 = g2, we obtain that

Re Γ
∏
p∈P

ωp(g1, g2) = 1,

which implies that
|ωp(g1, g2)| = 1 for all p ∈ P

and ∏
p∈P

ωp(g1, g2) = Γ.

It is clear that if (p, acΔ) = 1, then αp(δ1) = αp(δ2) = 0 (in the notations
of Lemma 1), and so

(3.4) ωp(g1, g2) =

(
1− 2

p

)
+

(
1− 1

p

) ∞∑
r=1

1

pr

(
g1 (p

r) + g2 (p
r)

)
.

Let

λp =

∞∑
r=1

1

pr
(g1(p

r) + g2(p
r)) .

It is clear that |λp| ≤ 2
p−1 , and one can check from (3.4) that |ωp(g1, g2)| < 1,

if g1(p
r) + g2(p

r) �= 2 for at least one r.

Thus we have g1(p
r) = g2(p

r) = 1 if p � |a1a2Δ, p > max(δ1, δ2).

The proof of our theorem is completed. �
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[2] Kátai, I., Multiplicative functions with regularity properties, VI., Acta
Math. Hungar., 58 (1991), 343–350.

[3] Timofeev, N.M., Integral limit theorems for sums of additive functions
with shifted arguments, Izvestiya: Mathematics, 59:2 (1995), 401–426.

Bui Minh Phong
Department of Computer Algebra
Faculty of Informatics
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COMPUTATIONAL INVESTIGATION

OF LEHMER’S TOTIENT PROBLEM

P. Burcsi (Budapest, Hungary)

S. Czirbusz (Budapest, Hungary)

G. Farkas (Budapest, Hungary)

Dedicated to Professor Antal Járai on his 60th birthday

Abstract. Let N be a composite number for which k ·ϕ(N) = N − 1. We
show that if 3 | N then ω(N) ≥ 40 000 000 and N > 10360 000 000.

1. Introduction

In this paper we study a famous unanswered question, the so-called ”Leh-
mer’s Totient Problem”, which was first studied by Lehmer in 1932 [1]. Lehmer
asked whether there is such a composite integer N for which the equation

(1) k · ϕ(N) = N − 1

holds, where ϕ is the Euler totient function. Then we say that N is a Lehmer
number and k is the Lehmer index of N . Let us denote the set of Lehmer
numbers by L. Lehmer conjectured that L is empty.

Let us consider the equation (1) in the form

(2) 1 = N − k · ϕ(N),

from which some interesting facts follow immediately. We know that ϕ(N) is
always even, if N > 1. Thus if N is even, then N − k ·ϕ(N) cannot be 1. Also
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we can observe easily that if N is not squarefree then N has a prime factor pi
for which pi | ϕ(N). In this case if N is a Lehmer number, then pi | 1 would
be valid which is impossible, so we get the following assertion.

Remark 1. If N is a Lehmer number, then 2 � N and N is square-free.

Hereafter we write a Lehmer number N in the form

(3) N = p1p2 . . . pn, where 3 ≤ p1 < p2 < · · · < pn

and p1, p2, . . . pn are different prime numbers.

A composite number N is called Carmichael number if

aN−1 ≡ 1 (mod N)

is valid for all a ∈ Z, where (a,N) = 1. The Carmichael function for N is
defined as the smallest positive integer λ(N) such that

aλ(N) ≡ 1 (mod N)

for every integer a that is both coprime to and smaller than N . As a matter of
fact λ(N) is the exponent of Z∗

N , the multiplicative group of residues modulo
N , i. e. λ(N) is the least common multiple of the orders of the elements of Z∗

N .
Since the order of Z∗

N is ϕ(N) we have λ(N) | ϕ(N). Thus if ϕ(N) | N − 1,
then λ(N) | N − 1. Finally we get that aN−1 ≡ 1 (mod N) for all elements of
Z∗
N , which implies the next assertion.

Remark 2. Every Lehmer number is a Carmichael number.

The next observation is important for the computational investigation of
the Lehmer conjecture.

Remark 3. Let 3 ≤ p1 < p2 < · · · < pn are different prime numbers. If
N = p1p2 . . . pnpn+1 is a Lehmer number, then

pi � pn+1 − 1, where 1 ≤ i ≤ n.

This assertion follows directly from (2). Subbarao and Siva Rama Prasad
proved the following statement in [2].

Remark 4. If N is a Lehmer number and 3 | N , then

k ≡ 1 (mod 3).
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2. Previous achievements

Although the Lehmer totient problem has not yet solved, a lot of results are
published concerning it. Let us denote the number of distinct prime factors of
N by ω(N). Lehmer showed that if N ∈ L, than ω(N) ≥ 7. Improving this
result Lieuwens [3] proved in 1970 that ω(N) ≥ 11. In 1977 Kishore [4] showed
that ω(N) ≥ 13, and his result was increased to 14 by Cohen and Hagis [5] in
1980 using a computational method. Nowadays the best lower bound of ω(N)
is 15 reached by John Renze [6] in 2004, and R. Pinch gave a computational
proof of the assertion:

N > 1030.

Let us suppose that p1 = 3. In this case Lieuwens shoved in [3] that

ω(N) ≥ 212 and N > 5.5 · 10570.

This result was improved by Subbarao and Siva Rama Prasad in [2]:

ω(N) ≥ 1850.

In 1988 Hagis [7] proved by computer the following inequalities:

(4) ω(N) ≥ 298 848 and n > 101 937 042.

We also mention two interesting pure mathematical results: Banks and
Luca proved in [8] that the number of composite integers N < x for which
ϕ(N) | N − 1 is at most

O
(
x1/2(log log x)1/2

)
.

Subbarao and Siva Rama Prasad showed in [2] that

N < (ω(N)− 1)
2(ω(N)−1)

.

3. Results

We focus on the case where p1 = 3. With computational methods, we
improve the results in (4) on ω(N) and N mentioned above.
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We need some notations. Let p1 < p2 < . . . < pm be a sequence of prime
numbers. Hereafter we call this sequence a G-sequence if the numbers fulfill
the conditions in (3). Now let r be a positive real number and p = p1, . . . , pm
be a G-sequence. We define the following value:

minω(p, r) = inf{ω(N)|N = p1p2 · · · pmpm+1 · · · pn,where
p1 < . . . < pn is a G-sequence

and the Lehmer index of N is at least r}.

We define minN(p, r) similarly, but for the infinum of N rather than ω(N).
Clearly, if we set r = 4, these values give lower bounds for ω(N) and N if N is
a Lehmer number with 3 | N , since it follows from (4) that the Lehmer index
of such a number is at least 4.

Unfortunately, it seems infeasible to calculate these values exactly. The
greedy algorithm of choosing pm+1, . . . , pn such that we always select the small-
est prime that keeps the G-sequence property might fail if r is large enough.
We illustrate the intuition behind this with an example: Let m = 1 and p1 = 3.
The smallest possible value for p2 is 5. Now if we want to extend the sequence,
we will have to look for primes that are incongruent to 1 modulo 3 and 5, giving
a set of 3 possible residue classes modulo 15, loosely speaking, a 3/8 fraction of
all subsequent primes. If we choose p2 = 11 instead, we get 9 possible residues
modulo 33, a 9/20 fraction of primes, which is larger. So choosing 5 increases
the Lehmer index faster, but this advantage might turn over when n becomes
large, since there are more primes to choose from.

However, it is possible to give lower bounds with the simple greedy algorithm
of choosing the minimal possible value for pm, . . . , pn, if we only require pi � pj−
−1 to hold for i < j with i ≤ m. Such a sequence will be called a Gm-sequence.
The estimates obtained this way are denoted by estω(p, r) and estN(p, r). We
have

minω(p, r) ≥ estω(p, r)

and also

(5) minω(p, r) ≥ min estω(
[
p, pm+1

]
, r) ,

where the minimum is taken over all pm+1 such that p, pm+1 is a Gm+1-
sequence. The same is true for the estimates of N . Unfortunately, there are
infinitely many possible pm+1 values, so in this form the estimate is still ineffec-
tive. Therefore we investigate the special case ofGm sequences when we add the
extra condition that pm+1 is at least q. This will be written as estω([p, q+], r).
Note that we denote the extension of a sequence by brackets.

The algorithm is relatively simple to implement. The main idea was to
transform the problem to an additive setting: instead of calculating the Lehmer
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index directly, we calculate the sum of the logarithms of the pi

pi−1 , and then
account for the −1 in the numerator of the Lehmer index. The logarithms of
the mentioned fractions were pre-stored in a table using fixed point represen-
tation. The rounding errors and the slight imprecision caused by the −1 in
the numerator of the Lehmer-index are also considered, so we found that the
64-bit fixed point representation never caused problems.

We summarize the results in the Table 1 where the estimates correspond to
nodes in a rooted tree. The root is 3, and each node of the tree represents a
G-sequence p1, . . . , pm or a sequence p1, . . . , pm, q+. Part of this infinite tree
is shown in Figure 1. The table shows the values of estω(p, 4), estN(p, 4), and
the lower bounds coming from inequality (5), where the minimum was taken
over the descendants shown in the tree.

Sequence p estω log10(estN) bound for minω bound for minN

[3] 1540 6082 4.0 · 107 103.6·10
8

[3, 5] 4.9 · 106 3.9 · 107 4.0 · 107 103.6·10
8

[3, 11] 1.6 · 107 1.3 · 108 8.1 · 107 107.4·10
8

[3, 17] 4.8 · 107 4.3 · 108 8.4 · 107 107.6·10
8

[3, 23] > 8.7 · 107 > 7.9 · 108 8.7 · 107 107.9·10
8

[3, 29+] > 8.9 · 107 > 8.1 · 108
[3, 5, 17] 4.0 · 107 3.6 · 108
[3, 5, 23] > 7.5 · 107 > 6.8 · 108
[3, 5, 29+] > 7.6 · 107 > 7.0 · 108
[3, 11, 17 ] > 8.1 · 107 > 7.4 · 108
[3, 11, 29] > 8.3 · 107 > 7.5 · 108
[3, 11, 41+] > 8.4 · 107 > 7.7 · 108
[3, 17, 23] > 8.4 · 107 > 7.6 · 108
[3, 17, 29+] > 8.6 · 107 > 7.8 · 108
[3, 23, 29] > 8.7 · 107 > 7.9 · 108
[3, 23, 41+] > 8.7 · 107 > 7.9 · 108

Table 1. This table shows our main results. For each sequence we show the estimates

that were output by the program, and the estimates obtained by looking at the

sequence’s displayed descendants - only shown for nodes with children.

4. Further work

The efficiency of the programs can be further enhanced by parallel process-
ing several G-sequences at a time. This can be achieved by “batch sieving”
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Figure 1. This figure shows part of the infinite tree of G-sequences.

that is calculating the logarithms of primes in an interval and registering which
of the examined G-sequences can be extended by the sieved prime. This method
will probably further improve the above results. New bounds will be published
on the project’s home page:

http://compalg.inf.elte.hu/tanszek/projects.php
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Abstract. S.A. Agahanov and G.I. Natanson [1] established lower and

upper bounds for the Lebesgue functions L
(α,β)
n (x) of Fourier–Jacobi se-

ries on the interval [−1, 1]. The bounds differ from each other only in a
constant factor depending on Jacobi parameters α and β, so their result is
of final character. The aim of this paper is to extend their estimation for
the weighted Lebesgue functions L

(α,β),(γ,δ)
n (x) using Jacobi weights with

parameters γ and δ. We shall also give sufficient conditions with respect
to α, β, γ and δ for which the order of the weighted Lebesgue functions is
log (n+ 1) on the whole interval [−1, 1].

1. Introduction

It is known that the Lebesgue functions of an approximation process play
an important role in the convergence of that process. The Lebesgue functions

L
(α,β)
n (x) (see (2.1)) of Fourier–Jacobi series have been studied by many au-

thors.
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G. Szegő [10, 9.3.] showed that for every fixed number ε ∈ (0, 1)

max
x∈[−1+ε,1−ε]

L(α,β)
n (x) ∼ log (n+ 1)

(n ∈ N := {1, 2, . . .}) .

Here and in what follows for the positive functions an, bn : I → R (I is an
interval of R) the notation

an(x) ∼ bn(x) (x ∈ I, n ∈ N)

means that there exist positive constants c1, c2 independent of x and n such
that

c1 ≤
an(x)

bn(x)
≤ c2 (x ∈ I, n ∈ N).

H. Rau [7] showed that the order of the Lebesgue functions at the points

−1 and 1 is nσ+ 1
2 , where σ = max {α, β}.

S. A. Agahanov and G. I. Natanson [1] proved the following result: if α, β >
> − 1

2 then

L(α,β)
n (x) ∼ log

(
n(1− x)ε(α)(1 + x)ε(β) + 1

)
+
√
n
(
|P (α,β)

n (x)|+ |P (α,β)
n+1 (x)|

)
(x ∈ [−1, 1], n ∈ N),

where

ε(t) =

{
1
2 , if t ∈ R \ { 12}

0, if t = 1
2

and P
(α,β)
n (x) is the nth Jacobi polynomial.

The aim of this paper is to extend this estimation by using suitable Jacobi
weights. We will give conditions for the weight parameters γ and δ such that

the order of the weighted Lebesgue functions L
(α,β),(γ,δ)
n (x) is log (n+ 1) on

the whole interval [−1, 1].

2. Pointwise estimate of the weighted Lebesgue function

For parameters α, β > −1 we shall denote by P
(α,β)
n the nth Jacobi poly-

nomial with the normalization

P (α,β)
n (1) =

(
n+ α

n

)
(n ∈ N0 := {0, 1, 2, . . .}).
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They are orthogonal with respect to the Jacobi weight function

w(α,β)(x) := (1− x)α(1 + x)β
(
x ∈ (−1, 1)

)
.

The nth Lebesgue function of Fourier–Jacobi series is defined by

(2.1)
L(α,β)
n (x) :=

1∫
−1

|K(α,β)
n (x, y)|w(α,β)(y) dy

(
n ∈ N, x ∈ [−1, 1]

)
,

where the kernel function K
(α,β)
n (x, y) can be expressed as

(2.2)

K(α,β)
n (x, y) =

n∑
k=0

{
h
(α,β)
k

}−1

P
(α,β)
k (x)P

(α,β)
k (y) =

= λ(α,β)
n

P
(α,β)
n+1 (x)P

(α,β)
n (y)− P

(α,β)
n (x)P

(α,β)
n+1 (y)

x− y
.

Here

(2.3) h
(α,β)
k =

2α+β+1

2k + α+ β + 1

Γ(k + α+ 1)Γ(k + β + 1)

Γ(k + 1)Γ(k + α+ β + 1)
,

and

(2.4) λ(α,β)
n =

2−α−β

2n+ α+ β + 2

Γ(n+ 2)Γ(n+ α+ β + 2)

Γ(n+ α+ 1)Γ(n+ β + 1)

(see [10, (4.3.3) and (4.5.2)]), where Γ(p) (p > 0) is the Gamma function.

For γ, δ ≥ 0 we define the nth weighted Lebesgue function of Fourier–Jacobi
series by

(2.5)
L(α,β),(γ,δ)
n (x) := w(γ,δ)(x)

1∫
−1

|K(α,β)
n (x, y)|w(α−γ,β−δ)(y) dy

(
n ∈ N, x ∈ [−1, 1]

)
.

For the existence of this integral, we shall assume that the parameters γ, δ
satisfy the inequalities

(2.6) γ < α+ 1, δ < β + 1.

Theorem. Suppose that α, β > − 1
2 and γ, δ ≥ 0 satisfy the inequalities

(2.7)
α

2
+

1

4
< γ <

α

2
+

3

4
and

β

2
+

1

4
< δ <

β

2
+

3

4
.
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Then we have for all n ∈ N and x ∈ [−1, 1] that

(2.8) c1 w
(γ,δ)(x)φ(α,β)

n (x) ≤ L(α,β),(γ,δ)
n (x) ≤ c2 w̃

(γ,δ)
n (x)φ(α,β)

n (x)

with the constants c1, c2 > 0 independent of x and n, where

φ(α,β)
n (x) := log

(
n
√
1− x2 + 1

)
+

+
√
n
(√

1− x+ 1
n

)α+ 1
2
(√

1 + x+ 1
n

)β+ 1
2

(
|P (α,β)

n (x)|+ |P (α,β)
n+1 (x)|

)
,

and

w̃(γ,δ)
n (x) :=

( √
1− x√

1− x+ 1
n

)2γ ( √
1 + x√

1 + x+ 1
n

)2δ

.

We note that the conditions for the parameters α, β, γ, δ in Theorem imply
the inequalities in (2.6).

Corollary. Suppose that α, β > − 1
2 and γ, δ ≥ 0 satisfy the inequalities

(2.7). Then we have

max
x∈[−1,1]

L(α,β),(γ,δ)
n (x) ∼ log (n+ 1) (n ∈ N).

Remark. A result similar to this Corollary proved by U. Luther and G.
Mastrioianni [5]. This paper does not contain a pointwise estimation (cf. (2.8)).

3. Preliminaries

In what follows for the functions an, bn : I → R (I is an interval of R) the
notation

an(x) = O(bn(x)) (x ∈ I, n ∈ N)

means that there exists a positive constant c independent of x and n such that

|an(x)| ≤ c bn(x) (x ∈ I, n ∈ N).

3.1. Formulas for Jacobi polynomials. Here we list those well known
formulas which we shall use throughout the paper.
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If α, β > −1 then for every x ∈ [−1, 1] and n ∈ N we have

(3.1) P (α,β)
n (x) = (−1)nP (β,α)

n (−x)

(see [10, (4.1.3)]) and

(3.2)
d

dx

{
P (α,β)
n (x)

}
= 1

2 (n+ α+ β + 1)P
(α+1,β+1)
n−1 (x)

(see [10, (4.21.7)]).

An important bound for Jacobi polynomials can be given in this form: if
α, β > −1 then

(3.3)

∣∣∣P (α,β)
n (x)

∣∣∣ = O
(
n− 1

2

) (√
1− x+

1

n

)−α− 1
2

(0 ≤ x ≤ 1, n ∈ N)

(see [6, 2.3.22]).

A more precise formula is the following. Let α, β > −1. Then we have

(3.4) P (α,β)
n (cos s) = n− 1

2 k(s)
(
cos (Ns+ ν) +

O(1)

n sin s

)
,

where

c

n
≤ s ≤ π − c

n
, k(s) = k(α,β)(s) = π− 1

2

(
sin

s

2

)−α− 1
2
(
cos

s

2

)−β− 1
2

,

N = n+ 1
2 (α+ β + 1), ν = −

(
α+ 1

2

)
π
2 .

Here c is a fixed positive number and the bound for the error term holds
uniformly in the interval

[
c
n , π −

c
n

]
(see [10, (8.21.18)]).

If α, β, μ > −1 then we have uniformly in n ∈ N that

(3.5)

1∫
0

|P (α,β)
n (y)|(1− y)μ dy ∼

⎧⎪⎨⎪⎩
nα−2μ−2, if 2μ < α− 3

2

n− 1
2 log n, if 2μ = α− 3

2

n− 1
2 , if 2μ > α− 3

2

(see [10, (7.34.1)]).

Let p > 0 be a fixed real number. Then

Γ(n+ p)

Γ(n)
∼ np (n ∈ N)

(see [8, p. 166]). Thus for the numbers (2.3) and (2.4) we have

h(α,β)
n ∼ 1

n
(n ∈ N),

λ(α,β)
n ∼ n (n ∈ N).

(3.6)
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We introduce the notations

Pn(x) : = P (α+1,β)
n (x),

P̃n(x) : = P (α+1,β+1)
n (x).

Using the formulas [10, (4.5.7)] we obtain that

1

2
(1− x2)P̃n−1(x) =

(
x+

α− β

2n+ α+ β + 2

)
P (α,β)
n (x)−

− 2n+ 2

2n+ α+ β + 2
P

(α,β)
n+1 (x).

(3.7)

Moreover, by [10, (4.5.4)] we have

(3.8)
(
1 +

α+ β

2n+ 2

)
(1− x)Pn(x) =

n+ α+ 1

n+ 1
P (α,β)
n (x)− P

(α,β)
n+1 (x).

3.2. Auxiliary results.

Lemma 1. Suppose that R ≥ 1 and A < 0 are fixed real numbers. Then
with a suitable index N ∈ N we have

(3.9)

2π
3∫

s+R
n

tA

t− s
dt ∼

(
s+

R

n

)A [
log

(ns
R

+ 1
)
+ 1

]

uniformly in s ∈ [0, π
2 ] and n ∈ N, n > N .

Proof. Let us introduce the following notation

I := I(n, s,A,R) :=

2π
3∫

s+R
n

tA

t− s
dt

(n ∈ N, s ∈ [0, π
2 ], A < 0, R ≥ 1).

In order to prove the statement, we split the interval [0, π
2 ] into three parts:[

0, π
2

]
=
[
0, R

n

]
∪
(
R
n ,

2π
9

)
∪
[
2π
9 , π

2

]
.

Case 1. Let 0 ≤ s ≤ R
n and t ∈ [s+ R

n ,
2π
3 ]. From 2s ≤ s+ R

n ≤ t it follows
that

1
2 t ≤ t− s ≤ t.
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Therefore we have

(3.10)

2π
3∫

s+R
n

tA−1 dt ≤

2π
3∫

s+R
n

tA

t− s
dt ≤ 2

2π
3∫

s+R
n

tA−1 dt.

Since

(3.11)

2π
3∫

s+R
n

tA−1 dt =
1

|A|

[(
s+

R

n

)A

−
(
2π

3

)A
]
,

we obtain the following upper estimation of I:

(3.12) I ≤ 2

|A|

(
s+

R

n

)A [
log

(ns
R

+ 1
)
+ 1

]
.

Now, let us consider the lower estimation. If n ≥ 6R
π and A < 0, then(

nπ
3R

)A ≤ 2A. Therefore using (3.10) and (3.11) we get

I ≥ 1

|A|

[(
s+

R

n

)A

−
(
2π

3

)A
]
=

1

|A|

(
s+

R

n

)A
⎡⎣1−(

2π
3

s+ R
n

)A
⎤⎦ ≥

≥ 1

|A|

(
s+

R

n

)A
⎡⎣1−(

2π
3
2R
n

)A
⎤⎦ =

1

|A|

(
s+

R

n

)A [
1−

(nπ
3R

)A
]
≥

≥ 1− 2A

|A|

(
s+

R

n

)A

=
1− 2A

|A|

(
s+

R

n

)A
1 + log 2

1 + log 2
≥

≥ 1− 2A

|A|(1 + log 2)

(
s+

R

n

)A [
1 + log

(ns
R

+ 1
)]

,

where we used the fact that from ns
R ≤ 1 it follows that log 2 ≥ log

(
ns
R + 1

)
.

Consequently,

I ≥ c

(
s+

R

n

)A [
log

(ns
R

+ 1
)
+ 1

]
(
s ∈ [0, R

n ], A < 0, R ≥ 1, n ≥ 6R
π

)
,

with a constant c > 0 independent of s and n.

This inequality together with (3.12) prove (3.9), if 0 ≤ s ≤ R
n .
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Case 2. Let R
n < s < 2π

9 . Then s + R
n < 2s < 3s < 2π

3 . Now we split the
integral I into two parts:

I =

2π
3∫

s+R
n

tA

t− s
dt =

3s∫
s+R

n

tA

t− s
dt+

2π
3∫

3s

tA

t− s
dt =: I1 + I2.

For I1 we have

I1 =

3s∫
s+R

n

tA

t− s
dt ≤

(
s+

R

n

)A
3s∫

s+R
n

1

t− s
dt =

=

(
s+

R

n

)A [
log(2s)− log

R

n

]
=

(
s+

R

n

)A

log

(
2ns

R

)
=

=

(
s+

R

n

)A [
log 2 + log

ns

R

]
≤
(
s+

R

n

)A [
log

(ns
R

+ 1
)
+ 1

]
.

If 3s ≤ t then s ≤ 1
3 t, i.e. s+

2
3 t ≤ t. Thus

2
3 t ≤ t− s ≤ t.

Therefore for I2 we get

I2 =

2π
3∫

3s

tA

t− s
dt ≤ 3

2

2π
3∫

3s

tA−1 dt =
3

2|A|

[
(3s)A −

(
2π

3

)A
]
≤

≤ 3

2|A| (2s)
A ≤ 3

2|A|

(
s+

R

n

)A

.

Summarizing the above formulas we obtain that there exists a constant c > 0
independent of n and s such that

(3.13)
I ≤ c

(
s+

R

n

)A [
log

(ns
R

+ 1
)
+ 1

]
(
s ∈ (Rn ,

2π
9 ), A < 0, R ≥ 1, n ≥ 6R

π

)
.

For the lower estimation of I it is enough to consider the integral I1. Since
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s+ R
n ≤ t ≤ 3s ≤ 3

(
s+ R

n

)
, thus by A < 0 we get that

I1 =

3s∫
s+R

n

tA

t− s
dt ≥ 3A

(
s+

R

n

)A
3s∫

s+R
n

1

t− s
dt =

= 3A
(
s+

R

n

)A(
log(2s)− log

R

n

)
=

= 3A
(
s+

R

n

)A

log
(
2
ns

R

)
.

(3.14)

The following inequality holds:

(3.15)
log(2x)

log(x+ 1) + 1
>

log 2

1 + log 2
(x ≥ 1).

Indeed, if x ≥ 1 then

log(2x)

log(x+ 1) + 1
≥ log(2x)

log(2x) + 1
= 1− 1

log(2x) + 1
≥

≥ 1− 1

1 + log 2
=

log 2

1 + log 2
.

Since ns
R ≥ 1 we obtain from (3.14) and (3.15) that

I ≥ I1 ≥
3A log 2

1 + log 2

(
s+

R

n

)A [
log

(ns
R

+ 1
)
+ 1

]
,

which together with (3.13) prove (3.9), if R
n < s < 2π

9 .

Case 3. Let 2π
9 ≤ s ≤ π

2 and t ∈
[
s+ R

n ,
2π
3

]
. Then

(3.16) s+
R

n
≤ t ≤ 2π

3
≤ 3s ≤ 3

(
s+

R

n

)
,

so we have the following upper estimation of I:

(3.17)

I =

2π
3∫

s+R
n

tA

t− s
dt ≤

(
s+

R

n

)A
2π
3∫

s+R
n

1

t− s
dt =

=

(
s+

R

n

)A [
log

(
2π

3
− s

)
− log

R

n

]
=

=

(
s+

R

n

)A

log

[
n

R

(
2π

3
− s

)]
≤
(
s+

R

n

)A

log

(
2ns

R

)
=

=

(
s+

R

n

)A [
log

ns

R
+ log 2

]
≤
(
s+

R

n

)A [
log

(ns
R

+ 1
)
+ 1

]
.
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For the lower estimation of I we use the condition A < 0 and (3.16). Then
we have

I =

2π
3∫

s+R
n

tA

t− s
dt ≥ 3A

(
s+

R

n

)A
2π
3∫

s+R
n

1

t− s
dt =

= 3A
(
s+

R

n

)A

log

[
n

R

(
2π

3
− s

)]
=

= 3A
(
s+

R

n

)A

log

(
π

2
· 4
3

n

R
− ns

R

)
≥

≥ 3A
(
s+

R

n

)A

log

(
1

3

ns

R

)
.

(3.18)

The following inequality is true:

(3.19)
log

(
1
3 x

)
log(x+ 1) + 1

>
log 4

3

log(8e)
(x ≥ 4).

Indeed, if x ≥ 4, then

log
(
1
3 x

)
log(x+ 1) + 1

>
log

(
1
3 x

)
log(2x) + 1

=
log

(
1
3 x

)
log

(
1
3 x

)
+ log 6 + 1

=

= 1− log(6e)

log
(
1
3 x

)
+ log(6e)

≥ 1− log(6e)

log 4
3 + log(6e)

=
log 4

3

log(8e)
.

Let n ≥ 18R
π . Then ns

R ≥ n
R

2π
9 ≥ 4. Thus using (3.18) and (3.19) we obtain

I ≥ 3A
log 4

3

log(8e)

(
s+

R

n

)A [
log

(ns
R

+ 1
)
+ 1

]
,

which together with (3.17) prove (3.9), if 2π
9 ≤ s ≤ π

2 .

Lemma 1 is proved. �

Lemma 2. If A > −1, n ∈ N and s ∈
(
1
n ,

π
2

]
, then there exists a constant

c > 0 independent from s and n such that

s− 1
n∫

0

tA

s− t
dt ≤ c

(
s+

1

n

)A

log (ns+ 1).
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Proof. Consider the following identity:

s− 1
n∫

0

tA

s− t
dt =

1

s

s− 1
n∫

0

tA[(s− t) + t]

s− t
dt =

=
1

s

s− 1
n∫

0

tA dt+
1

s

s− 1
n∫

0

tA+1

s− t
dt =: I1 + I2.

For I1 we have

I1 =
1

s

s− 1
n∫

0

tA dt =
1

s

(
s− 1

n

)A+1

A+ 1
≤ c sA,

where c > 0 is independent of s and n. From A+ 1 > 0 it follows that

I2 =
1

s

s− 1
n∫

0

tA+1

s− t
dt ≤ sA

s− 1
n∫

0

1

s− t
dt = sA log(ns),

therefore

I1 + I2 ≤ c sA
(
1 + log(ns)

)
≤ c sA log(ns+ 1).

Since
1

2
≤ s

s+ 1
n

= 1− 1

ns+ 1
≤ 1,

we have that there exists a c > 0 independent of s and n such that

sA ≤ c

(
s+

1

n

)A

,

which proves our statement. �

4. Proof of Theorem

In this section we shall use the following notations:

Pn(x) := P (α,β)
n (x), λn := λ(α,β)

n .
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By (3.1) we have the following symmetry property of the kernel function
(2.2)

K(α,β)
n (x, y) = K(β,α)

n (−x,−y)(
x, y ∈ [−1, 1], n ∈ N, α, β > −1

)
.

Using this we obtain the symmetry property of the weighted Lebesgue function:

(4.1)
L(α,β),(γ,δ)
n (−x) = L(β,α),(δ,γ)

n (x)(
x, y ∈ [−1, 1], n ∈ N, α, β > −1, γ, δ ≥ 0

)
,

which means that it is enough to prove (2.8) for x ∈ [0, 1] only.

From now on we will assume that x ∈ [0, 1].

In what follows, C or c (or C1, C2, . . . , c1, c2, . . . ) will always denote a pos-
itive constant (not necessarily the same at different occurrences) independent
of n and x. Also, N will always denote a fixed natural number, not necessarily
the same at different occurrences.

4.1. Upper estimation of L
(α,β),(γ,δ)
n (x). In order to estimate (2.5) we

split the integral into two parts:

1∫
−1

|K(α,β)
n (x, y)|w(α−γ,β−δ)(y) dy =

− 1
2∫

−1

. . . dy +

1∫
− 1

2

. . . dy.

In the second integral we use the substitutions

y = cos t (0 ≤ t ≤ 2π
3 ) and x = cos s (0 ≤ s ≤ π

2 ),

and consider the following two cases:

(i) 1
n ≤ s ≤ π

2 and (ii) 0 ≤ s ≤ 1
n .

In the first case we split the second integral into three parts:

1∫
− 1

2

. . . dy =

2π
3∫

0

. . . dt =

s− 1
n∫

0

. . . dt+

s+ 1
n∫

s− 1
n

. . . dt+

2π
3∫

s+ 1
n

. . . dt.

Thus we have

L(α,β),(γ,δ)
n (x) =:

4∑
k=1

Jk,
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where

J1 = w(γ,δ)(x)

− 1
2∫

−1

|K(α,β)
n (x, y)|w(α−γ,β−δ)(y) dy,

J2 = w(γ,δ)(x)

2π
3∫

s+ 1
n

|K(α,β)
n (x, cos t)|w(α−γ,β−δ)(cos t) sin t dt,

J3 = w(γ,δ)(x)

s+ 1
n∫

s− 1
n

|K(α,β)
n (x, cos t)|w(α−γ,β−δ)(cos t) sin t dt,

J4 = w(γ,δ)(x)

s− 1
n∫

0

|K(α,β)
n (x, cos t)|w(α−γ,β−δ)(cos t) sin t dt.

In the second case the lower bound in J3 is 0 and J4 := 0.

4.1.1. Estimation of J1. Here we use the formula (2.2). Since x ≥ 0 we
have |x− y| ≥ 1

2 (−1 ≤ y ≤ − 1
2 ). Consequently,

J1 = w(γ,δ)(x)

− 1
2∫

−1

λn
|Pn+1(x)Pn(y)− Pn(x)Pn+1(y)|

|x− y| w(α−γ,β−δ)(y) dy ≤

≤ 2λnw
(γ,δ)(x)|Pn(x)|

− 1
2∫

−1

|Pn+1(y)|w(α−γ,β−δ)(y) dy+

+2λnw
(γ,δ)(x)|Pn+1(x)|

− 1
2∫

−1

|Pn(y)|w(α−γ,β−δ)(y) dy.

By (3.1) we have

− 1
2∫

−1

|Pn(y)|w(α−γ,β−δ)(y) dy =

− 1
2∫

−1

|P (α,β)
n (y)|(1− y)α−γ(1 + y)β−δ dy ≤

≤ c

− 1
2∫

−1

|P (α,β)
n (y)|(1 + y)β−δ dy = c

1∫
1
2

|P (β,α)
n (y)|(1− y)β−δ dy ≤
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≤ c

1∫
0

|P (β,α)
n (y)|(1− y)β−δ dy.

Since δ < β
2 + 3

4 , i.e. 2(β − δ) > β − 3
2 it follows by (3.5) that the last integral

has the upper bound cn− 1
2 . Consequently,

− 1
2∫

−1

|Pn(y)|w(α−γ,β−δ)(y) dy = O
(
n− 1

2

)
(n ∈ N).

Collecting the above formulas and using (3.6) we obtain

(4.2)
J1 = O(

√
n)w(γ,δ)(x)

(
|P (α,β)

n (x)|+ |P (α,β)
n+1 (x)|

)
(
x ∈ [0, 1], n ∈ N

)
.

4.1.2. Estimation of J2. The expression

J2 = w(γ,δ)(x)

2π
3∫

s+ 1
n

|K(α,β)
n (x, cos t)|w(α−γ,β−δ)(cos t) sin t dt

may be simplified by using the following formulas:

w(γ,δ)(x) = (1− x)γ(1 + x)δ ∼ (1− x)γ
(
x ∈ [0, 1]

)
,

w(α−γ,β−δ)(cos t) sin t = (1− cos t)α−γ(1 + cos t)β−δ sin t ∼ t2(α−γ)+1(
t ∈ [0, 2π

3 ]
)
,

x− y = cos s− cos t = 2 sin
t+ s

2
sin

t− s

2
∼ t2 − s2 ∼ t(t− s)(

s ∈ [0, π
2 ], t ∈ [s, 2π

3 ]
)
.

Thus by (2.2) and (3.6) we have uniformly in x ∈ [0, 1] and n ∈ N that

J2 ∼ (1− x)γ

2π
3∫

s+ 1
n

|K(α,β)
n (x, cos t)| t2(α−γ)+1 dt ∼

∼ n(1− x)γ

2π
3∫

s+ 1
n

∣∣∣Pn+1(x)Pn(cos t)− Pn(x)Pn+1(cos t)
∣∣∣ t2(α−γ)

t− s
dt.
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Following the idea of [1, p. 15] we use the identity

(4.3)

Pn+1(y)Pn(x)− Pn(y)Pn+1(x) =

=

(
1 +

α+ β

2n+ 2

)[
(1− x)Pn(x)Pn(y)− (1− y)Pn(y)Pn(x)

]
,

which may be verified by using (3.8).

Thus we have uniformly in x ∈ [0, 1] and n ∈ N that

J2 = O(n)(1− x)γ+1|Pn(x)|

2π
3∫

s+ 1
n

|Pn(cos t)|
t2(α−γ)

t− s
dt+

+O(n)(1− x)γ |Pn(x)|

2π
3∫

s+ 1
n

|Pn(cos t)|
t2(α−γ)+2

t− s
dt =

= O(
√
n)(1− x)γ+1|Pn(x)|

2π
3∫

s+ 1
n

tα−2γ− 1
2

t− s
dt+

+O(
√
n)(1− x)γ |Pn(x)|

2π
3∫

s+ 1
n

tα−2γ+ 1
2

t− s
dt =: J21 + J22,

where we used (3.3) and
√
1− cos t ∼ t (t ∈ [0, 2π

3 ]).

From the condition α
2 + 1

4 < γ it follows that α − 2γ − 1
2 < −1, so by

Lemma 1, s ∼
√
1− x (cos s = x ∈ [0, 1]) and (3.3) we obtain

J21 = O(
√
n)(1− x)γ+1|Pn(x)|

2π
3∫

s+ 1
n

tα−2γ− 1
2

t− s
dt =

= O(1)

( √
1− x√

1− x+ 1
n

)2γ+2

(log (n
√
1− x+ 1) + 1).

Similarly, for J22 we have (since α− 2γ + 1
2 ∈ (−1, 0))

J22 = O(
√
n)(1− x)γ |Pn(x)|

2π
3∫

s+ 1
n

tα−2γ+ 1
2

t− s
dt =
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= O(1)

( √
1− x√

1− x+ 1
n

)2γ (
log (n

√
1− x+ 1)+

√
n
(√

1− x+ 1
n

)α+ 1
2 |Pn(x)|

)
.

Finally we obtain the estimate

(4.4)

J2 = O(1)

( √
1− x√

1− x+ 1
n

)2γ (
log (n

√
1− x+ 1)+

+
√
n
(√

1− x+ 1
n

)α+ 1
2 (|Pn(x)|+ |Pn+1(x)|) + 1

)
,

which holds uniformly in x ∈ [0, 1] and n ∈ N, n > N .

4.1.3. Estimation of J3. The expression J3 may be simplified (see the
estimate of J2):

J3 ∼ (1− x)γ

s+ 1
n∫

s− 1
n

|K(α,β)
n (x, cos t)| t2(α−γ)+1 dt

(x ∈ [0, 1], s ∈ [0, π
2 ]),

if s ≥ 1
n (the lower bound of the integral is 0 if 0 ≤ s ≤ 1

n ). For the kernel
function we shall use the following estimates (see (3.3) and (3.6))

∣∣∣K(α,β)
n (x, cos t)

∣∣∣ = ∣∣∣ n∑
k=0

1

hk
Pk(x)Pk(cos t)

∣∣∣ = ∣∣∣ 1

h0
+

n∑
k=1

1

hk
Pk(x)Pk(cos t)

∣∣∣ =
= O(1)

(
1 +

n∑
k=1

k|Pk(x)| |Pk(cos t)|
)
=

= O(1)
(
1 +

n∑
k=1

k k−
1
2
(√

1− x+ 1
k

)−α− 1
2 k−

1
2
(
t+ 1

k

)−α− 1
2
)
=

= O(1)
(
1 + n

(√
1− x+ 1

n

)−α− 1
2 t−α− 1

2

)
(x ∈ [0, 1], t ∈ [0, 2π

3 ]).

If 1
n < s ≤ π

2 then we have uniformly in x = cos s that

J3 = O(1) (1− x)γ

{ s+ 1
n∫

s− 1
n

t2(α−γ)+1 dt+
n(√

1− x+ 1
n

)α+1
2

s+ 1
n∫

s− 1
n

tα−2γ+
1
2 dt

}
.
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Since
s+ 1

n∫
s− 1

n

tA ∼ sA

n

(
1
n ≤ s ≤ π, n ∈ N, A > −1

)
,

we obtain by s ∼
√
1− x that

J3 = O(1)(1− x)γ

{
s2(α−γ)+1

n
+

sα−2γ+ 1
2(√

1− x+ 1
n

)α+ 1
2

}
=

= O(1)(1− x)γ

{
s2(α−γ+1) +

1(√
1− x+ 1

n

)2γ
}

=

= O(1)(1− x)γ
1(√

1− x+ 1
n

)2γ = O(1)

( √
1− x√

1− x+ 1
n

)2γ

.

If 0 ≤ s ≤ 1
n then (see the definition of J3 in Section 4.1) we get

J3 = O(1) (1− x)γ

{ s+ 1
n∫

0

t2(α−γ)+1 dt+
n(√

1− x+ 1
n

)α+1
2

s+ 1
n∫

0

tα−2γ+
1
2 dt

}
.

Since γ < α+1 and γ < α
2 +

3
4 we have 2(α−γ)+1 > −1 and α−2γ+ 1

2 > −1.
So by

s+ 1
n∫

0

tA dt ∼
(
s+

1

n

)A+1

(s ≥ 0, A > −1)

we obtain

J3 = O(1) (1− x)γ

⎧⎨⎩(
s+ 1

n

)2(α−γ)+2
+

n
(
s+ 1

n

)α−2γ+
3
2(√

1− x+ 1
n

)α+1
2

⎫⎬⎭ =

= O(1) (1− x)γ

{
1

n2(α+1−γ)
+ n

(√
1− x+ 1

n

) 1(√
1− x+ 1

n

)2γ
}

=

= O(1) (1− x)γ

{
1 +

1(√
1− x+ 1

n

)2γ
}

=

= O(1) (1− x)γ
1(√

1− x+ 1
n

)2γ = O(1)

( √
1− x√

1− x+ 1
n

)2γ

.
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Finally we get the estimate

(4.5) J3 = O(1)

( √
1− x√

1− x+ 1
n

)2γ

,

which holds uniformly in x ∈ [0, 1] and n ∈ N.

4.1.4. Estimation of J4. First we remark that J4 = 0 if 0 ≤ s ≤ 1
n , so we

suppose that s ∈
[
1
n ,

π
2

]
, i.e. x = cos s ∈

[
0, 1 − c

n2

]
=: In. The expression J4

may be simplified (see the estimation of J2) by using the relation

|x− y| ∼ |t2 − s2| ∼ s|t− s| ∼
√
1− x|t− s|(

1
n ≤ s ≤ π

2 , t ∈
[
0, s− 1

n

])
.

Namely, we have (uniformly in x ∈ In and n ∈ N)

J4 = w(γ,δ)(x)

s− 1
n∫

0

|K(α,β)
n (x, cos t)|w(α−γ,β−δ)(cos t) sin t dt ∼

∼ n(1− x)γ−
1
2

s− 1
n∫

0

|Pn+1(x)Pn(cos t)− Pn(x)Pn+1(cos t)|
t2(α−γ)+1

s− t
dt.

Using the identity (4.3) and the estimate (3.3) we obtain

J4 = O(n)(1− x)γ−
1
2

{
(1− x)|Pn(x)|

s− 1
n∫

0

|Pn(cos t)|
t2(α−γ)+1

s− t
dt+

+|Pn(x)|
s− 1

n∫
0

t2 |Pn(cos t)|
t2(α−γ)+1

s− t
dt

}
=

= O(
√
n)(1− x)γ+

1
2 |Pn(x)|

s− 1
n∫

0

tα−2γ+ 1
2

s− t
dt+

+O(
√
n)(1− x)γ−

1
2 |Pn(x)|

s− 1
n∫

0

tα−2γ+ 3
2

s− t
dt =: J41 + J42

(
1
n ≤ s = arccosx ≤ π

2 , n ∈ N
)
.
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Since γ < α
2 + 3

4 , thus α − 2γ + 1
2 > −1 we have by using Lemma 2 and

s ∼
√
1− x that

J41 = O(
√
n)(1− x)γ+

1
2

∣∣Pn(x)
∣∣ (s+ 1

n

)α−2γ+ 1
2 log(ns+ 1) =

= O(
√
n)

( √
1− x√

1− x+ 1
n

)2γ ∣∣Pn(x)
∣∣ (√1− x+ 1

n

)α+ 3
2 log(ns+ 1) =

= O(1)

( √
1− x√

1− x+ 1
n

)2γ

log (n
√
1− x+ 1)(

x ∈ In, n ∈ N
)
.

Similarly,

J42 = O(
√
n)(1− x)γ−

1
2 |Pn(x)|

(
s+ 1

n

)α−2γ+ 3
2 log(ns+ 1) =

= O(
√
n)

( √
1− x√

1− x+ 1
n

)2γ ∣∣Pn(x)
∣∣ (√1− x+ 1

n

)α+ 3
2

√
1− x

log(ns+ 1) =

= O(1)

( √
1− x√

1− x+ 1
n

)2γ

log (n
√
1− x+ 1)(

x ∈ In, n ∈ N
)
.

Summarizing the above formulas we obtain

(4.6)
J4 = O(1)

( √
1− x√

1− x+ 1
n

)2γ

log (n
√
1− x+ 1)(

x ∈ In, n ∈ N
)
.

4.1.5. The final upper estimate. Using (4.2), (4.4), (4.5) and (4.6) we have

L(α,β),(γ,δ)
n (x) = O(1)

( √
1− x√

1− x+ 1
n

)2γ (
log (n

√
1− x+ 1)+

√
n
(√

1− x+ 1
n

)α+ 1
2 (|Pn(x)|+ |Pn+1(x)|) + 1

)
(x ∈ [0, 1], n ∈ N, n > N).

Let x̄ ∈ (0, 1) be the closest number to 1 for which

Pn(x̄) =
1

2
Pn(1) ∼ nα
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holds. If x ∈ [0, x̄] then

(4.7) 1− x ≥ 1− x̄ =
Pn(1)− Pn(x̄)

P ′
n(ξ)

∼ 1

n2

(
ξ ∈ (x̄, 1)

)
(see (3.2)). Thus

log (n
√
1− x+ 1) ≥ c.

If x ∈ (x̄, 1] then Pn(x) ∼ nα, so

√
n
(√

1− x+ 1
n

)α+ 1
2 (|Pn(x)|+ |Pn+1(x)|) ≥ c.

This means that also

L(α,β),(γ,δ)
n (x) = O(1)

( √
1− x√

1− x+ 1
n

)2γ (
log (n

√
1− x+ 1)+

√
n
(√

1− x+ 1
n

)α+ 1
2 (|Pn(x)|+ |Pn+1(x)|)

)
(x ∈ [0, 1], n ∈ N, n > N)

is true.

From this we have uniformly in x ∈ [−1, 1] and n ∈ N, n > N that

L(α,β),(γ,δ)
n (x) = O(1)

( √
1− x√

1− x+ 1
n

)2γ ( √
1 + x√

1 + x+ 1
n

)2δ

φ(α,β)
n (x),

where

φ(α,β)
n (x) = log

(
n
√
1− x2 + 1

)
+

+
√
n
(√

1− x+ 1
n

)α+ 1
2
(√

1 + x+ 1
n

)β+ 1
2

(
|P (α,β)

n (x)|+ |P (α,β)
n+1 (x)|

)
.

Thus the upper estimation in (2.8) is proved.

4.2. Lower estimation of L
(α,β),(γ,δ)
n (x). Because of symmetry, it is

enough to consider x ∈ [0, 1]. We shall give three different lower estimations
for the weighted Lebesgue function.

4.2.1. The first lower estimation. If α, β > −1 and γ, δ ≥ 0, then there
exists a constant c > 0 independent of x and n such that

(4.8) L(α,β),(γ,δ)
n (x) ≥ cw(γ,δ)(x)

(
x ∈ [0, 1], n ∈ N

)
.
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Indeed, using the orthogonality of Jacobi polynomials we have

1∫
−1

K(α,β)
n (x, y)w(α,β)(y) dy = 1

(
x ∈ [0, 1], n ∈ N

)
.

Therefore

L(α,β),(γ,δ)
n (x) = w(γ,δ)(x)

1∫
−1

∣∣K(α,β)
n (x, y)

∣∣ w(α,β)(y)

(1− y)γ(1 + y)δ
dy ≥

≥ cw(γ,δ)(x)

1∫
−1

∣∣K(α,β)
n (x, y)

∣∣w(α,β)(y) dy ≥

≥ cw(γ,δ)(x)

1∫
−1

K(α,β)
n (x, y)w(α,β)(y) dy = cw(γ,δ)(x).

4.2.2. The second lower estimation. If α, β > −1 and γ, δ ≥ 0, then there
exists a constant c > 0 independent of x and n such that

(4.9)
L(α,β),(γ,δ)
n (x) ≥ cw(γ,δ)(x)

√
n
(
|Pn(x)|+ |Pn+1(x)|

)
(x ∈ [0, 1], n ∈ N).

In [1, p. 18] it was proven that

5π
6∫

2π
3

|K(α,β)
n (x, cos t)| dt ≥ c

√
n
(
|Pn(x)|+ |Pn+1(x)|

)
,

(x ∈ [0, 1], n ∈ N),

from which (4.9) follows immediately.

4.2.3. The third lower estimation. It is clear that

(4.10)

L(α,β),(γ,δ)
n (x) ≥

≥ w(γ,δ)(x)

2π
3∫

s+R
n

|K(α,β)
n (x, cos t)|w(α−γ,β−δ)(cos t) sin t dt

for all x = cos s ∈ [0, 1] and R > 0. Using the ideas of [1], we shall give a lower
estimation for the right hand side of (4.10) with a suitable number R > 1.
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Since
w(α−γ,β−δ)(cos t) sin t ∼ t2α−2γ+1(

s ∈ [0, π
2 ], t ∈ [s, 2π

3 ]
)
,

we obtain from (4.10) that

(4.11) L(α,β),(γ,δ)
n (x) ≥ c (1− x)γ

2π
3∫

s+R
n

|K(α,β)
n (x, cos t)| · t2α−2γ+1 dt.

The estimation the above integral is performed in several steps.

Step 1. From (3.7) it follows that

Fn(x, y) := Pn+1(y)Pn(x)− Pn(y)Pn+1(x) =
2n+ α+ β + 2

4(n+ 1)
×

×
{
(1− x2)P̃n−1(x)Pn(y)− (1− y2)P̃n−1(y)Pn(x) + (y − x)Pn(x)Pn(y)

}
,

so by (3.6) we have uniformly for all x ∈ [0, 1] and n ∈ N that

∣∣K(α,β)
n (x, y)

∣∣ = λ(α,β)
n

∣∣∣∣Fn(x, y)

x− y

∣∣∣∣ ≥
≥ c n

∣∣∣∣∣ (1− x2)P̃n−1(x)Pn(y)− (1− y2)P̃n−1(y)Pn(x)

x− y
− Pn(x)Pn(y)

∣∣∣∣∣ ≥
≥ c1 n

∣∣∣∣∣ (1− x2)P̃n−1(x)Pn(y)− (1− y2)P̃n−1(y)Pn(x)

x− y

∣∣∣∣∣− c2 n |Pn(x)| |Pn(y)|.

Since |x− y| = | cos s− cos t| ∼ t(t− s) we have

2π
3∫

s+R
n

|K(α,β)
n (x, cos t)| · t2α−2γ+1 dt ≥

≥ c1

2π
3∫

s+R
n

∣∣∣(1− x2)P̃n−1(x)Pn(y)− (1− y2)P̃n−1(y)Pn(x)
∣∣∣ t2α−2γ

t− s
dt−

−c2 n|Pn(x)|

2π
3∫

s+R
n

|Pn(cos t)|t2α−2γ+1 dt.
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Therefore by (3.5) we get uniformly for all x ∈ [0, 1] and n ∈ N that

(4.12) L(α,β),(γ,δ)
n (x) ≥

≥ c1 n (1− x)γ

2π
3∫

s+R
n

∣∣∣(1− x2)P̃n−1(x)Pn(y)− (1− y2)P̃n−1(y)Pn(x)
∣∣∣ t2α−2γ

t− s
dt−

−c2
√
n(1− x)γ |Pn(x)|.

Step 2. For the estimation of the integral

I :=

2π
3∫

s+R
n

∣∣∣(1− x2)P̃n−1(x)Pn(y)− (1− y2)P̃n−1(y)Pn(x)
∣∣∣ t2α−2γ

t− s
dt

we use the asymptotic formula (3.4) for the Jacobi polynomials

Pn(y) = P (α,β)
n (y) and P̃n−1(y) = P

(α+1,β+1)
n−1 (y),

which gives

P (α,β)
n (cos t) =

k(α,β)(t)√
n

(
cos(Nt+ ν) +

O(1)

n sin t

)
,

P
(α+1,β+1)
n−1 (cos t) =

k(α+1,β+1)(t)√
n− 1

(
cos(Nt+ ν) +

O(1)

n sin t

)
=

=
2 k(α,β)(t)√
n− 1 sin t

(
cos(Nt+ ν) +

O(1)

(n− 1) sin t

)
,

where

N = n− 1 +
(α+ 1) + (β + 1) + 1

2
= N

and

ν = −2(α+ 1) + 1

4
π = ν − π

2
.

We have

(1− x2)P̃n−1(x)Pn(y)− (1− y2)P̃n−1(y)Pn(x) =

=
k(α,β)(t)√

n

{
(1− x2)P̃n−1(x) cos(Nt+ ν)− 2

√
n

n−1Pn(x) sin t · sin(Nt+ ν)
}
+

+O

(
1

n3/2

)
(1− x2)P̃n−1(x) ·

k(α,β)(t)

sin t
+O

(
1

(n− 1)3/2

)
Pn(x) · k(α,β)(t).
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If 0 < s+ R
n ≤ t ≤ 2π

3 , then

k(α,β)(t) =
1√
π

(
sin t

2

)−α− 1
2
(
cos t

2

)−β− 1
2 ∼ t−α− 1

2 .

Therefore

I ≥ c1√
n

2π
3∫

s+R
n

∣∣∣(1− x2)P̃n−1(x) cos(Nt+ ν)−

−2
√

n
n−1Pn(x) sin t · sin(Nt+ ν)

∣∣∣ tα−2γ− 1
2

t− s
dt−

− c2
n3/2

{
(1− x2)|P̃n−1(x)|

2π
3∫

s+R
n

tα−2γ− 3
2

t− s
dt+ |Pn(x)|

2π
3∫

s+R
n

tα−2γ− 1
2

t− s
dt

}
.

Step 3. Using the above inequality and (4.12) we have

(4.13) L(α,β),(γ,δ)
n (x) ≥ c1

√
n (1− x)γ×

×

2π
3∫

s+R
n

∣∣∣(1− x2)P̃n−1(x) cos(Nt+ ν)− 2
√

n
n−1Pn(x) sin t · sin(Nt+ ν)

∣∣∣×
× tα−2γ− 1

2

t− s
dt− c2

√
n (1− x)γ |Pn(x)| − c3 �1(n, x),

where

�1(n, x) =
(1− x)γ√

n
×

×
{
(1− x2)|P̃n−1(x)|

2π
3∫

s+R
n

tα−2γ− 3
2

t− s
dt+ |Pn(x)|

2π
3∫

s+R
n

tα−2γ− 1
2

t− s
dt

}
.

Since t ≥ R
n we have

�1(n, x) ≤ c

√
n

R
(1− x)γ×

×
{
(1− x2)|P̃n−1(x)|

2π
3∫

s+R
n

tα−2γ− 1
2

t− s
dt+ |Pn(x)|

2π
3∫

s+R
n

tα−2γ+ 1
2

t− s
dt

}
.



On the weighted Lebesgue function of Fourier–Jacobi series 75

Using Lemma 1, s ∼
√
1− x and (3.3) we get uniformly for all x ∈ [0, 1] and

n ∈ N that

�1(n, x) ≤ c

( √
1− x√

1− x+ 1
n

)2γ

×

×
{ 1

R

[
log (n

√
1− x+ 1) + 1

]
+
√
n
(√

1− x+ 1
n

)α+ 1
2 |Pn(x)|

}
.

Step 4. Now, we consider the integral in (4.13) and write sin s =
√
1− x2

instead of sin t. Then by the Lagrange mean value theorem we have

sin t = sin s+ τ =
√
1− x2 + τ

with |τ | ≤ t− s. Thus we obtain an error term in the integral, which we shall
denote by �2(n, x). Therefore we have uniformly in x ∈ [0, 1] and n ∈ N that

L(α,β),(γ,δ)
n (x) ≥ c1

√
n (1− x)γ

√
1− x2×

×

2π
3∫

s+R
n

∣∣∣√1− x2P̃n−1(x) cos (Nt+ ν)− 2

√
n

n− 1
Pn(x) sin (Nt+ ν)

∣∣∣×
× tα−2γ− 1

2

t− s
dt− c2 �2(n, x)− c3 �1(n, x)− c4

√
n(1− x)γ |Pn(x)|,

where

�2(n, x) = 2
√
n (1− x)γ

n

n− 1
|Pn(x)|

2π
3∫

s+R
n

| sin (Nt+ ν)|tα−2γ− 1
2 dt ≤

≤ c
√
n (1− x)γ |Pn(x)|

(√
1− x+ 1

n

)α−2γ+ 1
2 ≤ c

( √
1− x√

1− x+ 1
n

)2γ

(using s ∼
√
1− x and (3.3)).

Let

ψ := arg

(√
1− x2P̃n−1(x) + i2

√
n

n− 1
Pn(x)

)
.

Then we have uniformly in x ∈ [0, 1] and n ∈ N that

L(α,β),(γ,δ)
n (x) ≥ c1 (1− x)γ×

×
(
n(1− x2)

(
(1− x2)P̃ 2

n−1(x) +
4n

n− 1
P 2
n(x)

)) 1
2

×
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×

2π
3∫

s+R
n

| cos (Nt+ ν + ψ)| t
α−2γ− 1

2

t− s
dt−

−c2 �2(n, x)− c3 �1(n, x)− c4
√
n(1− x)γ |Pn(x)|.

Step 5. Now we will estimate the integral

B :=

2π
3∫

s+R
n

∣∣cos (Nt+ ν + ψ)
∣∣ tα−2γ− 1

2

t− s
dt.

Since | cos t| ≥ cos2 t = 1+cos(2t)
2 it follows that

B ≥ 1

2

2π
3∫

s+R
n

(
1 + cos 2(Nt+ ν + ψ)

) tα−2γ− 1
2

t− s
dt.

Using Lemma 1 we have

2π
3∫

s+R
n

tα−2γ− 1
2

t− s
dt ≥ c

(
s+

R

n

)α−2γ− 1
2 [

log
(ns
R

+ 1
)
+ 1

]
≥

≥ c

(
s+

R

n

)α−2γ− 1
2 [

log (ns+ 1) + 1− logR
]
,

and by the second mean value theorem

2π
3∫

s+R
n

cos 2(Nt+ ν + ψ)
tα−2γ− 1

2

t− s
dt =

(s+ R
n )

α−2γ− 1
2

R/n
×

×
ξ∫

s+R
n

cos 2(Nt+ ν + ψ) dt ≤ c
(
s+ R

n

)α−2γ− 1
2

(
ξ ∈ (s+ R

n ,
2π
3 )

)
.

Then we get

B ≥ c1

(
s+

R

n

)α−2γ− 1
2 [

log (ns+ 1) + 1− c2

]
.
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Step 6. From this we obtain

L(α,β),(γ,δ)
n (x) ≥ c1 (1−x)γ

(
n(1− x2)

(
(1− x2)P̃ 2

n−1(x) +
4n

n− 1
P 2
n(x)

)) 1
2

×

×
(
s+

R

n

)α−2γ− 1
2 [

log (ns+ 1) + 1− c2

]
−

−c3 �2(n, x)− c4 �1(n, x)− c5
√
n(1− x)γ |Pn(x)|.(

x ∈ [0, 1], n ∈ N, n > N
)
.

By (3.3) and s ∼
√
1− x we have

C(x) := (1− x)γ
(
s+

R

n

)α−2γ− 1
2

×

×
{
n(1− x2)

(
(1− x2)P̃ 2

n−1(x) +
4n

n− 1
P 2
n(x)

)} 1
2 ≤

≤ c1

( √
1− x√

1− x+ 1
n

)2γ

≤ c2,

which means that

L(α,β),(γ,δ)
n (x) ≥ c1 C(x)

[
log (n

√
1− x+ 1) + 1

]
−

−c2

( √
1− x√

1− x+ 1
n

)2γ [
1

R

(
log (n

√
1− x+ 1) + 1

)
+

+
√
n
(√

1− x+ 1
n

)α+1
2 |Pn(x)|+ 1

]
− c3

√
n (1− x)γ |Pn(x)|

(x ∈ [0, 1], n ∈ N, n > N).

Let x̄ ∈ (0, 1) be the closest number to 1 for which

Pn(x̄) =
1

2
Pn(1) ∼ nα

holds. If x ∈ [0, x̄] then by (4.7) we have

s ∼
√
1− x ≥

√
1− x̄ ≥ c

n
,

thus (
s+

R

n

)α−2γ− 1
2

≥ c sα−2γ− 1
2 ,



78 Á. Chripkó

which means that

C(x) ≥ c sα−
1
2

{
n(1− x2)

(
(1− x2)P̃ 2

n−1(x) +
4n

n− 1
P 2
n(x)

)} 1
2

.

It is proved in [1, p. 21] that

sα−
1
2

{
n(1− x2)

(
(1− x2)P̃ 2

n−1(x) +
4n

n− 1
P 2
n(x)

)} 1
2

> c (x ∈ [0, x̄]),

so for every x ∈ [0, x̄] and n ∈ N, n > N we have

L(α,β),(γ,δ)
n (x) ≥ c1

[
log (n

√
1− x+ 1) + 1

]
− c2

{
√
n(1− x)γ(x)|Pn(x)|+

+

( √
1− x√

1− x+ 1
n

)2γ ( 1

R

[
log (n

√
1− x+ 1) + 1

]
+

+
√
n
(√

1− x+ 1
n

)α+1
2 |Pn(x)|+ 1

)}
.

Here

c1 −
c2
R

( √
1− x√

1− x+ 1
n

)2γ

≥ c1 −
c2
R

=: c3 ≥ c3

( √
1− x√

1− x+ 1
n

)2γ

.

The number R can be chosen such that c3 > 0. Then we have

L(α,β),(γ,δ)
n (x) ≥ c3

( √
1− x√

1− x+ 1
n

)2γ [
log (n

√
1− x+ 1) + 1

]
−

−c2
√
n(1− x)γ(x)|Pn(x)| − c2

( √
1− x√

1− x+ 1
n

)2γ

−

−c2

( √
1− x√

1− x+ 1
n

)2γ
√
n
(√

1− x+ 1
n

)α+1
2 |Pn(x)|

for all x ∈ [0, x̄] and n ∈ N, n > N . If x ∈ [x̄, 1] then

1− x ≤ 1− x̄ ∼ 1

n2

(see (4.7)), and so( √
1− x√

1− x+ 1
n

)2γ [
log (n

√
1− x+ 1) + 1

]
≤ c

( √
1− x√

1− x+ 1
n

)2γ

≤
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≤ c

( √
1− x√

1− x+ 1
n

)2γ
√
n
(√

1− x+ 1
n

)α+1
2 |Pn(x)|

(since Pn(x) ∼ nα on this interval), which means that with a suitable c4 > 0
we have

(4.14)

L(α,β),(γ,δ)
n (x) ≥ c3

( √
1− x√

1− x+ 1
n

)2γ [
log (n

√
1− x+ 1) + 1

]
−

−c2
√
n(1− x)γ(x)|Pn(x)| − c2

( √
1− x√

1− x+ 1
n

)2γ

−

−c4

( √
1− x√

1− x+ 1
n

)2γ
√
n
(√

1− x+ 1
n

)α+1
2 |Pn(x)|

for all x ∈ [0, 1] and n ∈ N, n > N .

4.2.4. The final lower estimation. From (4.8) we have

(4.15) L(α,β),(γ,δ)
n (x) ≥ c6 (1− x)γ (x ∈ [0, 1], n ∈ N).

(4.9), (4.14) and (4.15) imply

c3

( √
1− x√

1− x+ 1
n

)2γ [
log (n

√
1− x+ 1) + 1

]
≤ L(α,β),(γ,δ)

n (x)+

+c2
√
n(1− x)γ(|Pn(x)|+ |Pn+1(x)|) + c2

( √
1− x√

1− x+ 1
n

)2γ

+

c4
√
n

( √
1− x√

1− x+ 1
n

)2γ (√
1− x+ 1

n

)α+1
2 (|Pn(x)|+ |Pn+1(x)|) ≤

≤ L(α,β),(γ,δ)
n (x) +

c2
c
L(α,β),(γ,δ)
n (x) +

c2
c6

L(α,β),(γ,δ)
n (x)

(√
1− x+ 1

n

)−2γ
+

+
c4
c
L(α,β),(γ,δ)
n (x)

(√
1− x+ 1

n

)α−2γ+
1
2 .

Hence we obtain

c3(1− x)γ
[
log (n

√
1− x+ 1) + 1

]
≤ c7 L

(α,β),(γ,δ)
n (x)

(x ∈ [0, 1], n ∈ N, n > N).
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Since (by (3.3))

√
n
(√

1− x+ 1
n

)α+1
2 (|Pn(x)|+ |Pn+1(x)|) ≤ c

(x ∈ [0, 1], n ∈ N),

we have

L(α,β),(γ,δ)
n (x) ≥ c (1− x)γ

(
log (n

√
1− x+ 1)+

+
√
n
(√

1− x+ 1
n

)α+1
2 (|Pn(x)|+ |Pn+1(x)|)

)
≥

≥ cw(γ,δ)(x)φ(α,β)
n (x),

where

φ(α,β)
n (x) = log (n

√
1− x2 + 1) +

√
n
(√

1− x+ 1
n

)α+ 1
2 ×

×
(√

1 + x+ 1
n

)β+ 1
2 (|P (α,β)

n (x)|+ |P (α,β)
n+1 (x)|).

The above estimate holds uniformly in x ∈ [0, 1] and n ∈ N.

Theorem is proved. �

5. Proof of Corollary

Since L
(α,β),(γ,δ)
n (±1) = 0 we have

max
x∈[−1,1]

L(α,β),(γ,δ)
n (x) = L(α,β),(γ,δ)

n (x0)

with x0 ∈ (−1, 1).
From Theorem and (3.3) it follows that

L(α,β),(γ,δ)
n (x0) ≤ c1 · 1 · (log (n+ 1) + c2) ≤ c3 log (n+ 1)

and

L(α,β),(γ,δ)
n (x0) ≥ c4 w

(γ,δ)(x0) log

(
n
√
1− x2

0 + 1

)
≥

≥ c5 log (c6n+ 1) ≥ c7 log (n+ 1),

where the ci (i = 1 . . . 7) constants are positive and independent of n. This
proves the statement. �
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ITERATING THE TAU-FUNCTION

T́ımea Csajbók (Budapest, Hungary)

János Kasza(Budapest, Hungary)

Dedicated to Professor Antal Járai on the occasion of his 60th birthday

Abstract. For every natural number greater than 2, the sequence gen-
erated by iterating the tau-function is a strictly monotone decreasing se-
quence, it stabilizes and at the end reaches 2. The second but last value of
the sequence is an odd prime. The question of Imre Kátai is what is the
asymptotic distribution of these primes, if any.
Our goal was to analyze every tau-iteration sequence of all natural numbers
up to a given bound. We also analyzed the tau-iteration sequence for
randomly chosen set of large numbers. For calculating the tau-function,
efficient factorization methods are necessary.

Tau-function. Let n = pα1
1 pα2

2 ...pαr

r , where r ∈ N, αi > 0 integer, pi > 0
prime and pi �= pj if i �= j. Let τ(n) denote the number of positive divisors
of n. Then τ(n) = (α1 + 1)(α2 + 1) · · · (αr + 1).

It is evident that τ(1) = 1, τ(p) = 2 and τ(n) < n if n ≥ 3.

Tau-iteration. Consider the iterated sequence n, τ(n), τ (2)(n) = τ(τ(n)),
, . . ., where n > 2. This is a strictly monotone decreasing sequence until reach-
ing 2 and stabilizing (it cannot reach 1). The value before 2 is an odd prime.
We will call this number lasttau(n) from now on.

n τ(n) τ (2)(n) τ (3)(n) lasttau(n)
64 = 26 7 2 2 7
2541 = 3 · 7 · 112 12 6 4 3
3003 = 3 · 7 · 11 · 13 24 5 2 5

Table 1 – Examples for the iteration
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As it is clear from the examples, the most difficult part is the first factor-
ization. Since we want to work with 50–60-digit long numbers, we have to find
efficient methods of tolerable running times.

Small factors (2, 3, . . . , 9973) can be found using trial division. Beyond that
the Pollard ρ method is used up to 106.

For finding even larger factors, we use elliptic curves. Roughly speaking, the
running time of the elliptic curve factorization depends only on the length of
the second largest prime factor. This method is appropriate for finding factors
of about 20–30 digits.

To guarantee that each found factor is prime, the Miller–Rabin primality
test is used after these methods.

Elliptic curves. An elliptic curve over R is the set of all (x, y) pairs on
the plane satisfying y2 = x3 + ax + b, where a and b are real constants and
4a3 + 27b2 �= 0.

It is obvious that if any point (x, y) is on the curve, then so is (x,−y). The
condition for the constants guarantees that a definite tangent exists at every
point of the curve. If a (non-vertical) line intersects the curve at two points,
(x1, y1) and (x2, y2), then it intersects the curve at a third point (x3, y3) as
well. If slope of the line is λ = (y1 − y2)/(x1 − x2) then it is not hard to prove
that x3 = λ2 − x1 − x2 and y3 = λ(x3 − x1) + y1. We can define the addition
operation by the formula (x1, y1)+(x2, y2) = (x3,−y3). If the line is tangent to
the curve then we consider the line to intersect the curve at two equal points,
i. e., x1 = x2 and y1 = y2. In this case λ = (3x2

1+a)/(2y1). If the line is vertical
we consider the third intersection point to be in the infinity; this point will be
the zero element of the addition. With this addition operation the points of
the elliptic curve form an Abelian group.

We can define elliptic curves over any field having characteristic different
from 2 and 3. Evenmore generally, we can define “elliptic curves” but only with
a partial addition operation above a commutative ring with identity element,
for example, above Z/nZ if gcd(n, 6) = 1 and gcd(n, 4a3 + 27b2) = 1. For any
prime divisor p of n we also get an elliptic curve modulo p. If an addition is
defined over Z/nZ then it is also defined for any prime divisor p of n. A key
observation here is that for any prime divisor p of n, doing the addition modulo
n and reducing the result modulo p is the same as reducing the addends modulo
p first and then adding the results modulo p. To factorize n we use “elliptic
curves” over Z/nZ. Roughly speaking, for some point P on the curve, we
calculate k! · P for a rather large k. During this calculation the gcd operation
to compute λ will with high probability find a non-trivial factor of n.

We can use projective representation: Let the points of the curve be repre-
sented as equivalence classes of triplets (X,Y, Z) above Z/nZ. Point (X,Y, Z)
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is equivalent to all points (cX, cY, cZ) where c has an inverse modulo n. The
zero element of the “curve” is the equivalence class of (0, 1, 0). In this repre-
sentation the equation of the curve becomes the homogeneous equation

ZY 2 = X3 + aXZ2 + bZ3.

First we tried the approach described as follows. We select a random curve
above Z/nZ with a random point P on it by choosing random x, y, a values
and calculating b from them. Then we check that gcd(n, 4a3+27b2) = 1 holds.
If it does, we calculate k! · P for increasing values of k. If it is not successful,
we have found one of the divisors of n.

We carry out the multiplication by k! iteratively, by multiplying Q = (k −

1)! · P by k. We calculate kQ by another iteration starting from Q and 2Q.
The basic idea is to use only the X and Z coordinates. Let i be the number
represented by the first l bits of multiplier k. After the lth step we have the X
and Z coordinates of the points iQ and (i+1)Q. If the next bit, i. e., the l+1st
bit of k, is zero then we calculate the X and Z coordinates of the points 2iQ
and (2i+1)Q. If the next bit is one then we calculate the X and Z coordinates
of (2i+1)Q and (2i+2)Q. Therefore we need only two operations: duplication
and the calculation of the X and Z coordinates of (2i + 1)Q from the X and
Z coordinates of iQ, (i + 1)Q and Q.

The above approach could be more efficient with changing the curve param-
eter determination and calculation of coordinates of the new points. Therefore
we switched to the representation proposed by Montgomery [1]:

Let the curve equation in homogeneous coordinates be

(1) Y 2Z = X3 + aX2Z + bXZ2 + cZ3,

the two points of the curve P1 = (u1/w
2
1, v1/w

3
1) and P2 = (u2/w

2
2 , v2/w

3
2),

where u1/w
2
1 �= u2/w

2
2.

Then P3 = P1 + P2, where P3 = (u3/w
2
3, v3/w

3
3) can be determined the

following way:

u3 = (v2w
3
1 − v1w

3
2)

2 − aw2
1w

2
2(u2w

2
1 − u1w

2
2)

2

− (u1w
2
2 + u2w

2
1)(u1w

2
2 − u2w

2
1)

2,

v3 = −v1w
3
2(u2w

2
1 − u1w

2
2)

3 − (v2w
3
1 − v1w

3
2)u3

+ w2
2(u2w

2
1 − u1w

2
2)

2u1(v2w
3
1 − v1w

3
2),

w3 = w1w2(u2w
2
1 − u1w

2
2).

For the duplication 2P1 = (u3/w
2
3, v3/w

3
3), the corresponding coordinates have
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to be determined as well:

u3 = (3u2
1 + 2au1w

2
1 + bw4

1)
2 − 4(aw2

1 + 2u1)v
2
1 ,

v3 = −8v41 − (3u2
1 + 2au1w

2
1 + bw4

1)(u3 − 4u1v
2
1),

w3 = 2v1w1.

In this approach the calculation of kQ whereQ = (k−1)!P is simply done by
employing the left-to-right binary method using only duplication and addition
of Q.

It seems that the determination of the coordinates requires a lot of multi-
plication. If we determine the starting point and the parameters of the curve in
an appropriate way, the above calculations can be simplified. Let the starting
point of the curve be (1, α,−1), where the constants of the curve (1) are a = 0,
b = 0, and c = α2 − 2. With this selection, we can save many calculations.
There is only one curve parameter, α, which is selected by random for each
curve.

The effieciency of the factorization depends on the number of iterations and
the number of curves. The suggested values are the following [10]:

Digits Number of iterations Number of curves
15 2000 25
20 11000 90
25 50000 300
30 250000 700
35 1000000 1800
40 3000000 5100
45 11000000 10600
50 43000000 19300
55 110000000 49000
60 260000000 124000
65 850000000 210000
70 2900000000 340000

Table 2 – Suggested values for number of iterations and curves

These values served well as good starting points for selecting the actual
parameters. During the tests we had to tune them for finding the given length
of factors.

With this simple flow control, we could find the lasttau(n) values:
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procedure lasttau
t, last, i ← τ(factors),−1, 1
while (t �= 2)
last ← t
ECM(t, factors)
t ← τ(factors)
i ← i+ 1

end
end

The implementation of the described methods has been done in C and
C++ languages, with GNU GMP [12] multi-word arithmetic and with Condor
workload management system. The program was run on a cluster of 64-bit
AMD processors for several months.

In the next figure we can see how many times it is necessary to iterate the
τ function for numbers up to 108 to get the lasttau(n) values. We can see that
the most frequent value is 3 and it is never required to iterate more than 6
times.

Required number of iterations for lasttau(n) calculations up to n = 108

The next diagram shows the distribution of lasttau values up to n = 108.
The biggest lasttau value is 31. The occurrences of 3, 5 and 7 are the highest.
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The ratio of lasttau(n) values up to n = 108

Let us see these ratios for numbers around 1050. We chose randomly 1000
numbers and the distribution is the following:

Required number of iterations for calculating lasttau(n) for n around 1050

We can see that in this random sample the most frequent τ -iteration length
is 5 and the most infrequent is 6.

The next diagram shows that the greatest lasttau value is 11 and the oc-
currence ratio is very similar to the case of smaller numbers.
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Ratio of lasttau(n) values for n around 1050

Next, we chose the numbers in the interval [1070, 1070 + 1000). The distri-
bution is still very similar to before. The most frequent iteration length in this
case is also 5, and the most infrequent is also 6.

Required number of iterations for calculating lasttau(n)
between 1070 and 1070 + 1000

If we analyze the occurrences of lasttau(n) values, we will see that 11 and
13 are the most frequented ones. The distribution of smaller primes is very
similar to previous samples.
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Ratio of lasttau(n) values between 1070 and 1070 + 1000

The last diagram shows the time of factorization of 1000 numbers in seconds.
We can see that there are extremely high values, and sometimes it was done
very quickly. It depends on the number of curves that we are not able to
determine any factor.
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Let us have a closer look at some numbers of this sample. In Tables 3 and
4 we can see for each n considered what its factors are, the value of lasttau(n)
value (L), the number of iterations necessary (I), and the time the calculation
took in minutes.
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Table 3 – Detailed results 1.
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Abstract. In this paper we start from a given rational function system and
take the linear space spanned by it. Then in this linear space we construct a
rational function system that is biorthogonal to the original one. By means
of biorthogonality expansions in terms of the original rational functions can
be easily given. For the discrete version we need to choose the points of
discretization and the weight function in the discrete scalar product in a
proper way. Then we obtain that the biorthogonality relation holds true
for the discretized systems as well.

1. Introduction

There is a wide range of applications of rational function systems. For in-
stance in system, control theories they are effectively used for representing the
transfer function, see e.g. [1], [4], [5]. Another area where they have been found
to be very efficient is signal processing [8]. Recently we have been using them for
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representing and decomposing ECG signals [3]. In several cases the so called
Malmquist–Takenaka orthogonal systems are generated and used in applica-
tions. There are, however, applications when the result should be expressed
by the original rational functions rather than by the terms of the orthonormed
system generated by them. Then it makes sense to use the corresponding
biorthogonal system. This is the basic motivation behind our construction.

Let us take basic rational functions of the form

(1) ra,n(z) :=
1

(1− az)n
(|a| < 1, |z| ≤ 1, n ∈ P).

(P stands for the set of positive integers.) They form a generating system for
the linear space of rational functions that are analytic on the closed unit disc
D = {z ∈ C : |z| ≤ 1}, where D := {z ∈ C : |z| < 1} stands for the open unit
disc. Indeed, by partial fraction decomposition any analytic function can be
written as a finite linear combination of such functions. a∗ := 1/a = a/|a|2 is
the pole of ra,n the order of which is n. On the basis of the relation a∗a = 1
the parameter a will be called inverse pole.

In our construction we will use the following modified basic functions

(2) φa,n(z) :=
zn−1

(1− az)n
(z ∈ D, a ∈ D, n ∈ P) .

If a �= 0 then this modification makes no difference in the generated subspaces,
i.e.

span{ra,k : 1 ≤ k ≤ n} = span{φa,k : 1 ≤ k ≤ n} (n ∈ P, a �= 0) .

It is easy to see that the transition between the system of basic and the system
of modified basic functions is very simple. We note that, however, if a = 0 then
the two subspaces are different. Indeed, in this special special case we receive
the set of polynomials of order (n− 1) on the right side.

Let the set of rational functions that are analytic on D be denoted by R. It
is actually the set of linear combinations of modified basic functions given in
(2). R will be considered as the normed subspace of the Hardy space H2(D).
Recall that H2(D) is the collection of functions F : D→ C which are analytic
on D, and for which

‖F‖H2 := sup
0≤r<1

⎛⎝ 1

2π

π∫
−π

|F (reit)|2 dt

⎞⎠1/2

<∞

holds. It is known that for any F ∈ H2(D) the limit

F (eit) := lim
r→1−0

F (reit)
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exists for a.e. t ∈ I := [−π, π). The radial limit function defined on the torus
T belongs to L2(T). This way a scalar product can be defined on H2(D) as
follows

〈F,G〉 := 1

2π

π∫
−π

F (eit)G(eit) dt (F,G ∈ H2(T)) .

Then H2(D) becomes a Hilbert space since the norm induced by this scalar
product is equivalent to the original ‖ · ‖H2 norm.

Let b := (bn ∈ D, n ∈ N) be a sequence of inverse poles. Taking the segment
b0, b1, · · · , bn we count how many times the value of bn occurs in that. That
number will be called the multiplicity of bn and denoted by νn. In other words
νn is the number of indices j ≤ n for which bj = bn. Then we introduce the
following subspaces of R and of H2(D) generated by b

Rb
n := span{φbk,νk

: 0 ≤ k < n} (n ∈ P), Rb :=

∞⋃
n=0

Rb
n ⊂ R.

We note that Rb is everywhere dense in the Hilbert space H2(D), i.e. the
system {φbn,mn

: n ∈ N} is closed in H2(D), if and only if ([7], [11])

∞∑
n=0

(1− |bn|) =∞ .

By means of the Cauchy integral formula the scalar product of a function
F ∈ H2(D) and a modified basic function φa,k in (2) can be written in an
explicit form. Indeed, by definition

〈F, φa,k〉 =
1

2π

∫
I

F (eit)e−i(k−1)t

(1− ae−it)k
dt =

1

2πi

∫
|ζ|=1

F (ζ)

(ζ − a)k
dζ =

=
F (k−1)(a)

(k − 1)!
(a ∈ D, k ∈ P) .

(3)

Using this formula one can give an explicit form for the members of the so
called Malmquist–Takenaka (MT) system. The Malmquist–Takenaka system
(Φn, n ∈ N) is generated from (φbk,mk

, k ∈ N) by Gram-Schmidt orthogonal-
ization is of the form [12]:

(4) Φn(z) :=

√
1− |bn|2
1− bnz

n−1∏
k=0

Bbk(z) (z ∈ D, n ∈ N),

where

(5) Bb(z) :=
z − b

1− bz
(z ∈ D, b ∈ D)
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is the Blaschke function of parameter b. The Blaschke functions enjoy several
nice propeties. For instance they are bijections on the disc D and on the torus
T, they define a metric on D as follows

ρ(z1, z2) := |Bz1(z2)| =
|z1 − z2|
|1− z1z2|

(z1, z2 ∈ D) .

Moreover the maps εBb (b ∈ D, ε ∈ T) can be identified with the congruences
in the Poincaré model of the hyperbolic plane.
The orthogonal expansions with respect to Malmquist–Takenaka systems gen-
erated by a sequence of inverse poles turned to be very useful in several appli-
cations. On the other hand there are problems when the expansion in terms
of the generating basic or modified basic functions would be more useful. This
is the case for example in system identification when a partial fraction repre-
sentation of the transfer function is taken, and the poles should be determined
[10]. In such cases a biorthogonal system is needed to deduce such an expan-
sion. In the next section we construct a biorthogonal system to a finite system
of modified basic functions. The elements of the biorthogonal system are in
the subspace generated by the basic functions. In Section 3 we define a set
of points of discretization. By means of that and a proper weight function we
prove a discrete type biorthogonality as well. We note that a similar problem
was addressed in [9] except that equidistant subdivision was taken there and
the members of the biorthogonal system were polynomials.

2. Rational biorthogonal systems

Let b be a sequence of inverse poles in D and fix N ∈ P. Let a0, a1, · · · , an
denote the distinct elements in {b0, . . . , bN−1}. Then mj will stand for the num-
ber of occurrences of aj in {b0, . . . , bN−1}. We will use the simplified notations
φj := φa�,j , and RN := Rb

N . Then the following equations hold

RN = span{φj : 1 ≤ j ≤ m, 0 ≤ � ≤ n}
{bk : 0 ≤ k < N} = {aj : 0 ≤ j ≤ n} ,
m0 +m1 + · · ·+mn = N.

In this section we will construct a system {Ψj : 1 ≤ j ≤ m, k, � = 0, 1, . . . , n}
within RN which is biorthogonal to the generating system {φj : 1 ≤ j ≤
m, 0 ≤ � ≤ n}. In notation

i) span{Ψj : 1 ≤ j ≤ m, � = 0, 1, · · · , n} = RN ,

ii) 〈Ψj , φki〉 = δijδk (1 ≤ i ≤ mk, 1 ≤ j ≤ m, k, � = 0, 1, · · · , n) .
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Then the operator PN of projection ontoRN can be expressed as a biorthogonal
expansion

PNf =

n∑
k=0

mk∑
i=1

〈f,Ψki〉φki .

In the construction of the explicit form of the biorthogonal system the formula
in (3), that relates biorthogonality with Hermite interpolation, will play a key
role. Using the Blaschke functions defined in (5) we introduce the function Ωn

as follows

(6) Ωn(z) :=
1

(1− az)m�

n∏
i=0,i �=

Bmi
ai

(z) (0 ≤ � ≤ n) .

We will show that the members of the biorthogonal system can be written in
the form

(7) Ψj(z) = Pj(z)
Ωn(z)

Ωn(a)
,

where

(8) Pj(z) =

m�−1∑
s=0

P
(s)
j (a)

s!
(z − a)

s

is a polynomial of order (m − 1).
Indeed, by (3) we have

(9) 〈Ψj , φki〉 =
Ψ

(i−1)
j (ak)

(i− 1)!
(1 ≤ i, j ≤ mk) .

It follows from the definition of Ωn in (6) that if k �= � then ak is a root of the
nominator of Ψj of order exactly mk. Therefore the scalar product product is
0, and orthogonality holds in (9) for k �= �. In case k = � biorthogonality is
equivalent to

(10) 〈Ψj , φi〉 =
Ψ

(i−1)
j (a)

(i− 1)!
= δij (1 ≤ i, j ≤ m) .

Set

(11) ωn(z) =
Ωn(a)

Ωn(z)
.

We note that ωn is analytic in a proper neighborhood of a since Ωn(a) �= 0.
By definition, see (7), we have

Pj(z) = Ψj(z)ωn(z) .
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Using the product rule of differentiation and the condition (10) we obtain

P
(s)
j (a) =

s∑
r=0

(
s

r

)
Ψ

(r)
j (a)ω

(s−r)
n (a) =

(
s

j − 1

)
(j − 1)!ω

(s−j+1)
n (a)

for the coefficients of the polynomial Pj in (8). Hence

(12)
P

(s)
j (a)

s!
=

⎧⎨⎩
0, (0 ≤ s < j − 1) ;

ω
(s−j+1)
n (a)

(s− j + 1)!
, (j − 1 ≤ s < m) .

For the calculation of the derivatives of ωn we will use the following logarithmic
formula for the Blaschke functions, for definition see (5),

d

dz
log(Ba(z)) =

d

dz
[log(z − a)− log(1− az)]

=
1

z − a
+

a

1− az
=

1

z − a
− 1

z − a∗
(a∗ := 1/a).

(13)

Thus

d

dz
log(Ωn(z)) =

d

dz
[−m log(1− az) +

n∑
i=1,i �=

mi log(Bai
(z))] =

= − m

z − a∗
+

n∑
i=1,i �=

(
mi

z − ai
− mi

z − a∗i

)
.

(14)

Since
ω′
n(z)

ωn(z)
=

d

dz
log(ωn(z)) = −

d

dz
log(Ωn(z))

we can conclude by (14) that

(15) ω′
n(z) = ωn(z)ρn(z)

with

ρn(z) :=
m

z − a∗
−

n∑
i=1,i �=

mi

(
1

z − ai
− 1

z − a∗i

)
.

This provides a recursion process for the calculation of the derivatives of ωn.
As an example, the second and third derivatives are shown below:

ω
(2)
n = ω′

n ρn + ωn ρ′n = ωn(ρ
2
n + ρ′n),

ω
(3)
n = ω′

n(ρ
2
n + ρ′n) + ωn(2ρn ρ′n + ρ

(2)
n ) = ωn(ρ

3
n + 3ρn ρ′n + ρ

(2)
n ).
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where the terms ρ
(j)
n (z) are

ρ
(j)
n (z) = (−1)jj!

⎛⎝ m

(z − a∗ )j+1
−

n∑
i=1,i �=

mi

(
1

(z − ai)j+1
− 1

(z − a∗i )j+1

)⎞⎠ .

In summary, we have proved the following theorem.

Theorem 1. Let Ωn, and ωn be defined as in (6), and (11). Then the
systems

φki(z) : =
zi−1

(1− akz)i
,

Ψj(z) : =
Ωn(z)(z − a)

j−1

Ωn(a)

m�−j∑
s=0

ω
(s)
n (a)

s!
(z − a)

s

(z ∈ D, 1 ≤ i ≤ mk, 1 ≤ j ≤ m, 0 ≤ k, � ≤ n) are biorthogonal to each other
with respect to the scalar product in H2(D).
The two systems span the same linear space.
The derivatives of ωn can be calculated by recursion based on the relation in
(15).

3. Discrete rational biorthogonal systems

In this section we introduce a discrete scalar product in RN as follows

(16) [F,G]N :=
∑
z∈TN

F (z)G(z)ρN (z) (F,G ∈ RN ) ,

where the discrete set TN ⊂ T with number of elements equals to N, and the
positive weight function ρN on it will be defined later.
The Blaschke function Ba admits a representation on the unit circle of the form

(17) Ba(e
it) = eiβa(t) (t ∈ R) ,

where βa : R → R is strictly increasing for which βa(t + 2π) = βa(t) + 2π
holds. Moreover,

(18) β′
a(t) =

1− r2

1− 2r cos(t− α) + r2
(t ∈ R, a = reiα ∈ D) .
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Indeed, let us continue (13) to obtain

d

dz
log(Ba(e

it)) = ieit
(

1

eit − reiα
− 1

eit − 1
r e

iα

)
= i

1− r2

1− 2r cos(t− α) + r2
.

Hence (17) and (18) follow. Then by the definition of {a0, · · · , an} at the
beginning of Section 2 we have that the Blaschke products can be written as

N−1∏
k=0

Bbk(e
it) =

n∏
j=0

eimjβaj
(t) = eiθN (t) (t ∈ R) ,

where

θN (t) :=

n∑
j=0

mjβaj
(t) (t ∈ R) .

θN is strictly increasing and θN (t + 2π) = θN (t) + 2Nπ . Therefore, for any
t0 ∈ I and k = 1, 2, · · · , N − 1 there exists exactly one tk ∈ (t0, t0 + 2π) for
which

(19) θN (tk) = 2πk + θN (t0) (k = 0, 1, · · · , N − 1)

holds.
Then the set of discretization TN and the weight function ρN in (16) are defined
as follows

TN := {eitk : k = 0, 1, · · · , N − 1} , ρN (eit) =
1

θ′N (t)
.

Then the following theorem holds for this discrete model and the rational func-
tions.

Theorem 2. The MT-system Φn (n = 0, 1, · · · , N − 1) is orthonormed
system with respect to the scalar product in (16), i.e.

[Φk,Φ]N = δk (0 ≤ k, � < N) .

The Ψj , and φj (1 ≤ j ≤ m, 0 ≤ � ≤ n) systems are biorthogonal to each
other with respect to the scalar product in (16), i.e.

[Ψr, φks]N = δkδrs (1 ≤ r ≤ m, 1 ≤ s ≤ mk, 0 ≤ k, � ≤ n) .



Biorthogonal systems to rational functions 103

Proof. For the proof we will use the following closed form the Dirichlet
kernels of the MT-systems [2] (or see e.g. [6], pp. 320, [4], pp. 82):

(20)
DN (t, τ) :=

N−1∑
j=0

Φj(e
it)Φj(e

iτ ) =
ei(θN (t)−θN (τ)) − 1

ei(t−τ) − 1

(t, τ ∈ R, t �= τ) .

By the definition of tk, see (19), we have

DN (tk, t) = 0 (k �= �, 0 ≤ k, � < N) .

In the special case t = τ one can deduce from the continuity of the kernel and
from (20) that

DN (t, t) = lim
τ→t

Dn(t, τ) = lim
τ→t

(
eiτ

eiθN (τ)
· e

iθN (t) − eiθN (τ)

t− τ
·
(eit − eiτ

t− τ

)−1
)

=

= θ′N (t) .

This along with (20) imply

N−1∑
j=0

ujkuj =
DN (tk, t)

DN (tk, tk)
= δk (0 ≤ k, � < N),

for the matrix

ujk :=
Φj(tk)√
DN (tk, tk)

(0 ≤ k, � < N) .

This means that the matrix is unitarian. Taking the adjoint matrix we have

N−1∑
j=0

ukjuj =

N−1∑
j=0

Φk(tj)Φ(tj)

DN (tj , tj)
= [Φk,Φ]N = δk (0 ≤ k, � < N) .

The first part of our theorem on the discrete orthogonality of the MT-sytems
is proved.

The proof of the second part of our theorem follows from the equivalence
of the scalar products 〈·, ·〉 and [·, ·]N in the subspace RN :

〈F,G〉 = [F,G]N (F,G ∈ RN ) .

Indeed, if F,G ∈ RN then they can be expressed as linear combinations of the
Φk (k = 0, 1, · · · , N − 1) MT-functions:

F =
N−1∑
k=0

λkΦk, G =

N−1∑
k=0

μkΦk.
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Since, as it has already been shown, the MT-functions are orthonormed with
respect to both scalar products we have

〈F,G〉 =
N−1∑
k=0

N−1∑
=0

λkμ〈Φk,Φ〉 =
N−1∑
k=0

λkμk =

=
N−1∑
k=0

N−1∑
=0

λkμ[Φk,Φ]N = [F,G]N .

Hence our statement on discrete biorthogonality follows by Theorem 1. �
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AN INTERPLAY BETWEEN JENSEN’S AND

PEXIDER’S FUNCTIONAL EQUATIONS

ON SEMIGROUPS
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Zygfryd Kominek (Katowice, Poland)

Dedicated to Professor Antal Járai on his 60-th birthday

Abstract. Let (S,+) and (G,+) be two commutative semigroups. Assum-
ing that the latter one is cancellative we deal with functions f : S −→ G
satisfying the Jensen functional equation written in the form

2f(x+ y) = f(2x) + f(2y) .

It turns out that functions f, g, h : S −→ G satisfying the functional equa-
tion of Pexider

f(x+ y) = g(x) + h(y)

must necessarily be Jensen. The validity of the converse implication is also
studied with emphasis placed on a very special Pexider equation

ϕ(x+ y) + δ = ϕ(x) + ϕ(y) ,

where δ is a fixed element of G. Plainly, the main goal is to express the
solutions of both: Jensen and Pexider equations in terms of semigroup
homomorphisms.

Bearing in mind the algebraic nature of the functional equations consid-
ered, we were able to establish our results staying away from topological
tools.
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1. Introduction

We will investigate the very classical functional equations of Jensen, i.e.

f

(
x+ y

2

)
=

f(x) + f(y)

2
,

and of Pexider, i.e.
f(x+ y) = g(x) + h(y),

where f, g, h are functions defined and assuming values in some abstract al-
gebraic structures. These equations have very rich literature; the basic facts
concerning that topic may be found (among others) in the well known mono-
graphs of J. Aczél [1] and M. Kuczma [2]. It is also commonly known that in the
case where both the domain and the target spaces of functions considered are
linear spaces, the general solution of the Jensen and of the Pexider equations
may be expressed in terms of additive functions. Let us recall that a function
a is called additive provided it satisfies the Cauchy functional equation

a(x+ y) = a(x) + a(y).

In classical situations Jensen functions are represented as the sum of an ad-
ditive map and a constant function. The same can be told about solutions
of the Pexider equation. The question we are faced is: to what extent these
representations remain valid and/or what kind of potentially new phenomena
may occur while dealing with more abstract algebraic structures. In particu-
lar, regarding the Jensen equation, the category of not necessarily commutative
groups was taken into account in the papers of C.T. Ng [3], [4] and H. Stetkaer
[6]. In the present paper we will concentrate on semigroups as potential do-
mains and codomains. In some cases, we try also to get rid of the 2-divisibility
assumption dealing with a version of the Jensen equation which does not re-
quire the feasibility of such division. On the other hand, we try to keep the
strictly algebraic character of our studies avoiding, in particular, any topolog-
ical structures. This aspect distinguishes our approach from the one applied,
for instance, in the paper of W. Smajdor [5]. The basic results from this paper
will be generalized considerably just due to the fact that, bearing in mind the
algebraic nature of the functional equations considered, we were able to stay
away from topological tools.
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2. Some lemmas

We start with a simpler case when the target space of functions considered
is a group.

Lemma 1. Let (S,+) be a commutative semigroup and let (G∗,+) be an
Abelian group. Then a function f : S → G∗ satisfies the Jensen functional
equation

(1) 2f(x+ y) = f(2x) + f(2y), x, y ∈ S,

if and only if there exist an additive map A : S → G∗ and a constant b ∈ G∗

such that

f(2x) = A(x) + b, x ∈ S, and 2f(x) = A(x) + 2b, x ∈ S + S.

Proof. Assume (1) and define a function ϕ : S → G∗ by the formula

ϕ(x) := f(2x)− 2f(x), x ∈ S.

Then by (1) we obtain

2f(x+ y + z) = f(2(x+ y)) + f(2z) = ϕ(x+ y) + 2f(x+ y) + f(2z) =

= ϕ(x+ y) + f(2x) + f(2y) + f(2z),

as well as,

2f(x+ y + z) = f(2x) + f(2(y + z)) = f(2x) + ϕ(y + z) + 2f(y + z) =

= f(2x) + ϕ(y + z) + f(2y) + f(2z),

for all x, y, z ∈ S, whence

ϕ(x+ y) = ϕ(y + z), x, y, z ∈ S.

In particular, setting z = y, due to the commutativity of the binary law in S,

ϕ(2y) = ϕ(x+ y) = ϕ(2x), x, y ∈ S.

Therefore, ϕ(t) ≡ const =: c on the set S+S. In view of (1) and the definition
of ϕ, this implies

f(2x) + c+ f(2y) + c = 2f(x+ y) + c+ c = f(2(x+ y)) + c, x, y ∈ S,
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stating that the map A(x) := f(2x)+ c, x ∈ S, is additive. By setting b := −c
we derive the first part of our assertion. For x ∈ S+S one has x = y+z, y, z ∈
∈ S whence, by (1),

A(x) + 2b = A(y + z) + 2b = A(y) + b+A(z) + b =

= f(2y) + f(2z) = 2f(y + z) = 2f(x).

This ends the proof of the necessity, and since the sufficiency is obvious, the
proof is completed. �

Corollary 1. Let all the assumptions of Lemma 1 be satisfied. If, moreover,
the division by 2 is uniquely performable in (G∗,+), then f : S → G∗ satisfies
equation (1) if and only if there exist an additive map A∗ : S → G∗ and a
constant b ∈ G∗ such that

f(x) =

{
A∗(x) + b, for x ∈ S + S

arbitrary, on S \ (S + S).

Proof. By virtue of the second part of the assertion of Lemma 1 it suffices
to put A∗(x) := 1

2A(x), x ∈ S. �

Lemma 2. Let all the assumptions of Lemma 1 be satisfied. If functions
f, g, h : S → G∗ satisfy the Pexider functional equation

(2) f(x+ y) = g(x) + h(y), x, y ∈ S,

then there exist an additive map A : S → G∗ and constants b, c ∈ G∗ such that

(∗)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f(2x) = A(x) + b, x ∈ S;

2g(x) = A(x) + b− c, x ∈ S;

2h(x) = A(x) + b+ c, x ∈ S ;

2f(x) = A(x) + 2b, x ∈ S + S.

Conversely, every triple (f, g, h) satisfying conditions (∗) yields a solution to
the equation

(3) 2f(x+ y) = 2g(x) + 2h(y), x, y ∈ S.

Proof. (Necessity.) We shall first show that f satisfies (1). Indeed, for all
x, y ∈ S we have

2f(x+ y) = f(x+ y) + f(y + x) = g(x) + h(y) + g(y) + h(x) =

= f(2x) + f(2y).
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On account of Lemma 1, there exists an additive map A : S → G∗ and a
constant b ∈ G∗ such that

f(2x) = A(x) + b, x ∈ S, and 2f(x) = A(x) + 2b, x ∈ S + S.

Since

g(x) + h(y) = f(x+ y) = f(y + x) = g(y) + h(x), x, y ∈ S,

we get
h(x)− g(x) = h(y)− g(y) ≡ const =: c.

Consequently,
h(x) = g(x) + c, x ∈ S ,

and, therefore, for every x, y ∈ S we have

f(x+ y) = g(x) + h(y) = g(x) + g(y) + c,

whence
A(x) + b = f(2x) = 2g(x) + c, x ∈ S,

and
2h(x) = 2g(x) + 2c = A(x) + b+ c, x ∈ S,

as claimed.

(Sufficiency.)

2g(x)+2h(y) = A(x)+b−c+A(x)+b+c = A(x+y)+2b = 2f(x+y), x, y ∈ S,

which completes the proof. �

Corollary 2. Let (S,+) be a commutative semigroup and let (G∗,+) be an
Abelian group uniquely 2-divisible. Then the triple (f, g, h) of functions from
S into G∗ yields a solution to equation (2) if and only if

f(x) =

{
A∗(x) + 2b∗ for x ∈ S + S
arbitrary on S \ (S + S);

g(x) = A∗(x) + b∗ − c∗, x ∈ S;

h(x) = A∗(x) + b∗ + c∗, x ∈ S,

where A∗ : S → G∗ is additive and b∗, c∗ are arbitrary constants from G∗.

Proof. In the light of Lemma 2 it suffices to put A∗ := 1
2A, b∗ := 1

2b,
c∗ := 1

2c. �
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3. Main results

In what follows, we shall apply these results to deal with the case where G
is a cancellative semigroup.

Theorem 1. Let (S,+) be a commutative semigroup and let (G,+) stand
for an Abelian cancellative semigroup. A map f : S → G satisfies Jensen’s
functional equation (1) if and only if there exist elements β, γ ∈ G such that⎧⎪⎨⎪⎩

f(x+ y) + β = f(x) + f(y) + γ for x, y ∈ 2S;

f(2x) + β = 2f(x) + γ for x ∈ S + S;

f is arbitrary on S \ (S + S) .

Proof. We embed the semigroup (G,+) into a group (G∗,+) of equiva-
lence classes determined by the relation

(u, v) ∼ (x, y) :⇐⇒ u+ y = v + x .

Clearly, we identify an element x from G with the class [(2x, x)]. Moreover, we
have also

−[(x, y)] = [(y, x)], as well as 0 = [(x, x)] .

Finally, we put
f∗(x) := [(2f(x), f(x))], x ∈ S.

Equation (1) may equivalently be written in the form

4f(x+ y) + f(2x) + f(2y) = 2f(x+ y) + 2f(2x) + 2f(2y), x, y ∈ S.

This allows us to write

2f∗(x+ y) = [(4f(x+ y), 2f(x+ y))] =

= [(2f(2x) + 2f(2y), f(2x) + f(2y))] =

= f∗(2x) + f∗(2y).

On account of Lemma 1 we infer that there exist an additive map A : S → G∗

and a constant b ∈ G∗ such that

f∗(2x) = A(x) + b, x ∈ S, 2f∗(x) = A(x) + 2b, x ∈ S + S.

Let b = [(β, γ)]. Then, for all x, y ∈ S, one has

f∗(2x+ 2y) + b = A(x+ y) + 2b = A(x) +A(y) + b+ b = f∗(2x) + f∗(2y),
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i.e.

[(2f(2x+ 2y) + β, f(2x+ 2y) + γ)] = [(2f(2x) + 2f(2y), f(2x) + f(2y))] ,

whence

2f(2x+2y)+f(2x)+f(2y)+β = f(2x+2y)+2f(2x)+2f(2y)+γ, x, y ∈ S,

i.e.
f(2x+ 2y) + β = f(2x) + f(2y) + γ, x, y ∈ S

or, equivalently,

f(x+ y) + β = f(x) + f(y) + γ, for all x, y ∈ 2S.

Let now x ∈ S + S. Then x = y + z, y, z ∈ S whence by (1):

2f(x) + γ = 2f(y + z) + γ = f(2y) + f(2z) + γ = f(2y + 2z) + β =

= f(2x) + β,

as claimed.

Clearly, equation (1) leaves the values of f on S \ (S + S) undetermined.

(Sufficiency). Let x, y ∈ S. Then x+ y ∈ S + S and we have

f(2(x+ y)) + β = 2f(x+ y) + γ and f(2x+ 2y) + β = f(2x) + f(2y) + γ,

whence
2f(x+ y) = f(2x) + f(2y), x, y ∈ S.

This finishes the proof. �

Corollary 3. Let (S,+), (G,+) and f be the same as in Theorem 1. Then
the function

af (x) := f(2x) + β + γ, x ∈ S,

enjoys the property

af (x+ y) + 2β = af (x) + af (y), x, y ∈ S.

Proof.

af (x+ y) + 2β = f(2x+ 2y) + 2β + β + γ = f(2x) + f(2y) + 2β + 2γ =
= af (x) + af (y),

for all x, y ∈ S. �
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Theorem 2. Let (S,+) be a commutative semigroup and let (G,+) stand
for an Abelian cancellative semigroup. If functions f, g, h : S → G satisfy
the Pexider equation (2), then each of them satisfies the Jensen equation (1).
Moreover, there exist a map ψ : S → G and constants α, β, γ, δ, ε ∈ G such
that

(4) ψ(x+ y) + ε = 2f(x+ y) + α, x, y ∈ S,

(5) ψ(x+ y) = 2g(x+ y) + β = 2h(x+ y) + γ, x, y ∈ S,

and

(6) ψ(x+ y) + δ = ψ(x) + ψ(y) , x, y ∈ S.

Conversely, if α, β, γ, δ, ε ∈ G are arbitrary constants satisfying condition

(7) β + γ + ε = α+ δ

and equalities (4), (5) and (6) are fulfilled, then

(8) 2f(2x+ 2y) = 2g(2x) + 2h(2y), x, y ∈ S.

Proof. Equation (2) implies that

2f(x+ y) = f(x+ y) + f(y + x) = g(x) + h(y) + g(y) + h(x) = f(2x) + f(2y),

for all x, y ∈ S, i.e. f satisfies Jensen equation (1). Therefore

f(2x) + f(2y) = 2f(x+ y) = 2g(x) + 2h(y), x, y ∈ S.

Fix u, v ∈ S arbitrarily and put x = u+ v. Then

f(2u+ 2v) + f(2y) = 2g(u+ v) + 2h(y),

and by virtue of (2) we get

g(2u) + h(2v) + g(y) + h(y) + g(2v) = 2g(u+ v) + 2h(y) + g(2v),

whence also

g(2u) + g(2v) + f(2v + y) = 2g(u+ v) + f(2v + y)

follows, i.e. g(2u) + g(2v) = 2g(u + v). Analogously, we check that h is a
Jensen function.
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On account of Theorem 1, there exist constants βf , γf , βg, γg, βh, γh ∈ G
such that

(9) ϕ(x+ y) + βϕ = ϕ(x) + ϕ(y) + γϕ, x, y ∈ 2S,

and

(10) ϕ(2x) + βϕ = 2ϕ(x) + γϕ, x ∈ S + S,

where ϕ ∈ {f, g, h}. Let us define the functions aϕ : S → G, ϕ ∈ {f, g, h} by
the formulas

aϕ(x) := ϕ(2x) + βϕ + γϕ, x ∈ S.

Since ϕ is Jensen function we obtain by (10) that

(11) aϕ(x+ y) + 2βϕ = aϕ(x) + aϕ(y), x, y ∈ S.

According to (2) we have

ag(x) + ah(y) = g(2x) + βg + γg + h(2y) + βh + γh =

= f(2x+ 2y) + βg + γg + βh + γh =

= g(2y) + βg + γg + h(2x) + βh + γh =

= ag(y) + ah(x),

whence
ag(x) + ah(y) = ag(y) + ah(x), x, y ∈ S.

Thus, there exist constants λ, μ ∈ G such that

(12) ag(x) + λ = ah(x) + μ, x ∈ S.

Now, setting
ψ(x) := ag(x) + λ = ah(x) + μ, x ∈ S ,

by virtue of (11), for all x, y ∈ S , we infer that

ψ(x)+ψ(y) = ag(x)+λ+ag(y)+λ = ag(x+y)+2βg+2λ = ψ(x+y)+2βg+λ ,

and it suffices to put δ := 2βg + λ to obtain (6). It follows from (11), the
definition of ag and (10) that ψ(x+y) = ag(x+y)+λ = g(2(x+y))+βg+γg+λ =
= 2g(x+y)+2γg+λ , for all x, y ∈ S, which coincides with the first equality in
(5) on setting β := 2γg + λ. The other one may be derived similarly. Finally,
by (4), (2) and (10)

ψ(x+ y) + δ + βf = ψ(x) + ψ(y) + βf = ag(x) + λ+ ah(y) + μ+ βf =

= g(2x) + βg + γg + λ+ h(2y) + βh + γh + μ+ βf =

= f(2(x+ y)) + βg + γg + λ+ βh + γh + μ+ βf =

= 2f(x+ y) + γf + βg + γg + λ+ βh + γh + μ ,
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and it sufficies to put ε := δ+βf as well as α := γf +βg + γg +λ+βh+ γh+μ
to arrive at (4).

Conversely, let α, β, γ, δ, ε ∈ G be arbitrary constants satisfying (7) and
assume that equalities (4), (5) and (6) are fulfilled. Then

2g(2x) + 2h(2y) + β + γ + ε = ψ(2x) + ψ(2y) + ε
= ψ(2x+ 2y) + δ + ε = 2f(2x+ 2y) + α+ δ ,

which jointly with (7) implies (8) and finishes the proof. �

As we see in our considerations the functional equation (6) (see also (11))
plays a crucial role. Thus the problem of solving this equation seems to be a
basic one.

Theorem 3. Let (S,+) be a commutative semigroup and let (G,+) stand
for an Abelian cancellative semigroup. Given a fixed element δ ∈ G , if a map
ψ : S → G satisfies the equation

(13) ψ(x+ y) + δ = ψ(x) + ψ(y), x, y ∈ S,

then the set Sδ := ψ−1(G+ δ) is either empty or (Sδ,+) yields a subsemigroup
of (S,+) and there exists a homomorphism H : Sδ → G such that

(14) ψ(x) = H(x) + δ, x ∈ Sδ.

If, moreover, there exists a y0 ∈ S such that ψ(y0) ∈ G+ 2δ, then S + y0 ⊂ Sδ

and there exists an η ∈ G such that

(15) ψ(x) + η = H(x+ y0), x ∈ S.

In particular, such a representation takes place provided that ψ is a surjection
from S onto G.

Proof. Assume that Sδ �= ∅ and take arbitrary x, y ∈ Sδ. Then there exist
w, z ∈ G such that ψ(x) = w + δ and ψ(y) = z + δ. By (13) we infer that

ψ(x+ y) + δ = ψ(x) + ψ(y) = w + δ + z + δ

whence
ψ(x+ y) = w + z + δ ∈ G+ δ.

This means that x + y ∈ Sδ and proves that (Sδ,+) forms a subsemigroup
of (S,+). It follows from the definition of Sδ that there exists a function
H : Sδ → G fulfilling equality (14). For all x, y ∈ Sδ we have

H(x+ y) + 2δ = ψ(x+ y) + δ = ψ(x) + ψ(y) = H(x) + δ +H(y) + δ.

which states that H is a homomorphism.
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If for some y0 ∈ S we have ψ(y0) = η+2δ with some η ∈ G, then y0 ∈ Sδ.
Consequently

η + 2δ = ψ(y0) = H(y0) + δ,

whence

(16) H(y0) = η + δ ∈ G+ δ.

According to (13) we get

ψ(x+ y0) + δ = ψ(x) + ψ(y0) = ψ(x) + η + 2δ, x ∈ S,

and since G is cancellative,

(17) ψ(x+ y0) = ψ(x) + η + δ ∈ G+ δ, x ∈ S.

Therefore x+ y0 ∈ Sδ, x ∈ S, or, equivalently,

S + y0 ⊂ Sδ.

On account of (14) we obtain

ψ(x+ y0) = H(x+ y0) + δ, x ∈ S.

By virtue of (17) we get (15). It is easily seen that (15) takes place provided
ψ is surjective. �

Corollary 4. Let (S,+) be a commutative semigroup and let (G,+) stand
for an Abelian cancellative monoid. Assume that ψ : S → G is a surjection
of S onto G satisfying equation (13), Sδ := ψ−1(G+ δ) �= ∅ and y0 is a fixed
element of S such that ψ(y0) ∈ G + 2δ. Then (Sδ,+) is a subsemigroup of
(S,+) and there exists a homomorphism H mapping Sδ into G such that

ψ(x) = H(x+ y0), x ∈ S,

and
H(S + y0) = G, H(y0) = δ

Proof. Going back to the proof of Theorem 3, take y0 ∈ S such that
ψ(y0) = 2δ there. Then η = 0 and consequently ψ(x) = H(x+ y0), x ∈ S, and
H(y0) = δ. The equality H(S + y0) = G is obvious. �

Remark 1. Let (S,+), (G,+) be the same as in Theorem 3. If ψ : S → G
satisfies equation (13) and there exist u, v ∈ S such that ψ(u) = 2ψ(v), then
the set Sδ = ψ−1(G+ δ) is nonvoid.

In fact, ψ(u) = 2ψ(v) = ψ(v) + ψ(v) = ψ(2v) + δ ∈ G+ δ.
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Lemma 3. Let (S,+) be a commutative semigroup and let (G,+) be
an Abelian cancellative semigroup in which the division by 2 is uniquely per-
formable. If ψ : S → G satisfies equation (13), then for an arbitrary positive
integer n and each x ∈ S the following equality

(18) ψ(x) +
1

2n
δ =

1

2n
ψ(2nx) + δ

holds true.

Proof. (Induction.) Putting y = x in (13) we obtain

ψ(2x) + δ = 2ψ(x), x ∈ S ,

whence (18) follows immediately for n = 1. Assume (18) for a positive integer
n and each x ∈ S. Then

1

2
ψ(2x) +

1

2n+1
δ =

1

2n+1
ψ(2n+1x) +

1

2
δ, x ∈ S,

as well as

1

2
ψ(2x) + δ +

1

2n+1
δ =

1

2n+1
ψ(2n+1x) +

1

2
δ + δ, x ∈ S.

Applying (18) for n = 1 we obtain

ψ(x) +
1

2
δ +

1

2n+1
δ =

1

2n+1
ψ(2n+1x) +

1

2
δ + δ

and, consequently,

ψ(x) +
1

2n+1
δ =

1

2n+1
ψ(2n+1x) + δ ,

which ends the proof. �

Corollary 5. Under the assumptions of Lemma 3 we have

ψ(x) ∈
∞⋂

n=1

(
G+

(
1− 1

2n

)
δ

)
, x ∈ S.

Proof. Fix an x ∈ S and a positive integer n. On account of Lemma 3
we have

ψ(x) +
1

2n
δ =

1

2n
ψ(2nx) +

1

2n
δ +

(
1− 1

2n

)
δ, x ∈ S, n ∈ N,
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whence

ψ(x) =
1

2n
ψ(2nx) +

(
1− 1

2n

)
δ, x ∈ S, n ∈ N,

which finishes the proof. �

Theorem 4. Let (S,+) be a commutative semigroup and let (G,+) be a
semigroup that is Abelian uniquely 2-divisible and cancellative. Assume that
δ ∈ G is such that

(19)
⋂
n∈N

(
G+

(
1− 1

2n

)
δ

)
⊂ G+ δ.

Then a map ψ : S → G satisfies (13) if and only if there exists a homomorphism
H : S → G such that

ψ(x) = H(x) + δ, x ∈ S.

Proof. It follows from (19) and Corollary 5, that

ψ(x) ∈ G+ δ, x ∈ S.

Therefore

ψ(x) = H(x) + δ, x ∈ S,

where H : S → G is a function. Applying (19) we obtain

H(x+ y) + 2δ = ψ(x+ y) + δ = ψ(x) + ψ(y) = H(x) + δ +H(y) + δ,

which implies that H(x + y) = H(x) +H(y), x, y ∈ S. Since the suffiency is
obvious, the proof has been finished. �

Theorem 5. Let (S,+), (G,+) be two commutative uniquely 2-divisible
semigroups. Assume that (G,+) is cancellative and such that condition (19) is
fulfilled for every δ ∈ G. Then f : S → G satisfies Jensen functional equation
(1) if and only if there exists an additive function H : S → G such that

f(x+ y) = H(x) + f(y), x, y ∈ S.

Proof. By Theorem 1 there exist constants β, γ ∈ G such that

f(x+ y) + β = f(x) + f(y) + γ, x, y ∈ 2S = S.
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Putting ψ(x) := f(x) + γ, x ∈ S, we note that

ψ(x+ y) + β = f(x+ y) + γ + β = f(x) + f(y) + 2γ = ψ(x) +ψ(y), x, y ∈ S,

i.e. equation (13) is satisfied with δ = β. On account of Theorem 4, there
exists an additive map H : S → G such that

ψ(x) = H(x) + β, x ∈ S.

Therefore
f(x) + γ = H(x) + β, x ∈ S ,

and hence

f(x+ y) + β = f(x) + f(y) + γ = H(x) + β + f(y), x, y ∈ S ,

yielding
f(x+ y) = H(x) + f(y), x, y ∈ S ,

as claimed.

Conversely, for all x, y ∈ S, one has

f(2x)+ f(2y) = H(x)+ f(x)+H(y)+ f(y) = f(x+ y)+ f(y+x) = 2f(x+ y) ,

which completes the proof. �

4. Generalizations of W. Smajdor’s results

W. Smajdor [5] defines an abstract convex cone as a cancellative Abelian
monoid (G,+) provided that a map [0,∞)×G � (λ, s)→ λs ∈ G is given such
that

1s = s, λ(μs) = (λμ)s, λ(s+ t) = λs+ λt, (λ+ μ)s = λs+ μs,

s, t ∈ G, λ, μ ∈ [0,∞).

Under the additional assumption that G is endowed with a complete metric �
such that

�(s+ t, s+ t′) = �(t, t′), s, t, t′ ∈ G, �(λs, λt) = λ�(s, t), λ ∈ [0,∞), s, t ∈ G ,

W. Smajdor’s main result (see Theorem 1 of [5]) states that any function f
mapping an Abelian 2-divisible semigroup (S,+) into (G,+) satisfies the Jensen
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equation if and only if there exists an additive map a : S → G such that the
equality f(x+ y) = a(x) + f(y) holds true for all x, y ∈ S.

The occurrence of a topology (actually: metric topology) in the target
cone in Smajdor’s theorem seems to be artificial bearing in mind the strictly
algebraic nature of the problem considered. Our Theorem 5 generalizes her
result by avoiding any topological structure in the target space. In fact, the
only thing we need is to show that under W. Smajdor’s assumptions condition
(19), i.e. the inclusion ⋂

n∈N

(
G+

(
1− 1

2n

)
δ

)
⊂ G+ δ

is fulfilled for every δ from G. As a matter of fact, we shall achieve that with
the aid of considerably weaker requirements.

Proposition. Given a cancellative semigroup (G,+) uniquely divisible by
2 and admitting a complete metric � such that

�(x+ z, y + z) = �(x, y), x, y, z ∈ G, �(2x, 2y) = 2�(x, y), x, y ∈ G ,

there exists a neutral element 0 in G, i.e. (G,+) is necessarily a monoid.
Moreover, for every δ from G condition (19) holds true.

Proof. The binary law “+” has to be continuous; in fact, if

G � xn −→ x0 ∈ G and G � yn −→ y0 ∈ G,

then

�(xn + yn, x0 + y0) ≤ �(xn + yn, xn + y0) + �(xn + y0, x0 + y0) =

= �(yn, y0) + �(xn, x0) −→ 0 as n −→∞ .

In particular the map G � x −→ 2x ∈ G is continuous. Fix δ ∈ G arbitrarily.
Then (

1

2n
δ

)
n∈N

is a Cauchy sequence .

Indeed, for all positive integers n, k one has

�

(
1

2n+k
δ,

1

2n
δ

)
≤

k−1∑
j=0

1

2n+j
�

(
1

2
δ, δ

)
≤ 1

2n−1
�

(
1

2
δ, δ

)
.

Since ρ is complete the sequence ( 1
2n δ)n∈N converges to an x0 ∈ G. Then also

2x0 = 2 lim
n→∞

1

2n+1
δ = lim

n→∞
1

2n
δ = x0 ,
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whence, for every x ∈ G, we get

x+ x0 = x+ 2x0 = (x+ x0) + x0 and x0 + x = 2x0 + x = x0 + (x0 + x) ,

which, by means of the cancellativity assumption, states that x0 is zero element
in G .

Now, in order to show the inclusion (19), fix an arbitrary x from the inter-
section

⋂
n∈N(G + (1 − 1

2n )δ). Then, for every n ∈ N one may find a gn ∈ G
such that

x+
1

2n
δ = gn + δ .

Since the addition is continuous and the sequence
(

1
2n δ

)
n∈N

converges to the

neutral element x0, the sequence (gn + δ)n∈N tends to x. Therefore, x belongs
to G+ δ since, obviously, the set G+ δ is closed as a complete subspace of G.
This completes the proof. �

Remark 2. Condition (19) is automatically satisfied in any Abelian,
uniquely 2-divisible group (G,+). Actually, for any δ ∈ G the inclusion

G+

(
1− 1

2n

)
δ = G− 1

2n
δ + δ ⊂ G+ δ

is satisfied for every n ∈ N.

Another example of an Abelian, uniquely 2-divisible monoid in which con-
dition (19) holds true reads as follows. Let a : R → R be a discontinuous
additive function and let

G := {x ∈ R : a(x) ≥ 0}.

Equipped with the usual addition, the set G yields a commutative semigroup
with 0 as the neutral element. For any δ ∈ G and for every n ∈ Nwe have

G+

(
1− 1

2n

)
δ =

{
y ∈ R : a(y) ≥

(
1− 1

2n

)
a(δ)

}
,

whence⋂
n∈N

(
G+

(
1− 1

2n

)
δ

)
=

⋂
n∈N

{
y ∈ R : a(y) ≥

(
1− 1

2n

)
a(δ)

}
=

= {y ∈ R : a(y) ≥ a(δ)} = G+ δ .

Noteworthy is the fact that in the case where a(δ) > 0 the shift G+ δ fails to
coincide with G itself.
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Finally, each uniquely 2-divisible topological monoid (G,+; 0) such that
for every δ ∈ G the shift G + δ is closed and limn−→∞ 2−nδ = 0 enjoys the
property (19) (cf. the proof of the Proposition).

The following example shows that, in general, condition (19) need not be
fulfilled. Indeed, let G = (0,∞) and let δ > 0 be fixed. Then G equipped
with the usual addition is a uniquely 2-divisible commutative semigroup and

⋂
n∈N

(
(0,∞) +

(
1− 1

2n

)
δ

)
=

⋂
n∈N

((
1− 1

2n

)
δ,∞

)
=

= [δ,∞) �⊂ G+ δ = (δ,∞) .

We terminate this paper with the following generalization of Theorem 2 in [5]
by W. Smajdor.

Theorem 6. Let (S,+), (G,+) be two commutative uniquely 2-divisible
semigroups. Assume that (G,+) is cancellative and such that condition (19) is
fulfilled for every δ ∈ G. If f, g, h : S → G fulfil the Pexider equation (2) then
there exists a homomorphism H : S → G such that

f(x+ y) = H(x) + f(y), g(x+ y) = H(x) + g(y), h(x+ y) = H(x) + h(y),

for all x, y ∈ S.

Proof. On account of Theorem 2 we infer that f, g and h are Jensen
functions. It follows from Theorem 5 that there exist additive functions Hf , Hg

and Hh such that for all x, y ∈ S the equalities

f(x+ y) = Hf (x) + f(y), g(x+ y) = Hg(x) + g(y), h(x+ y) = Hh(x) + h(y),

hold true. Thus, for arbitrary x, y ∈ S we have

Hf (x+ y) + f(x+ y) = f(2x+ 2y) = g(x+ y) + h(x+ y) =

= Hg(x) + g(y) +Hh(y) + h(x) =

= Hg(x) +Hh(y) + f(x+ y)

which leads to
Hf (x+ y) = Hg(x) +Hh(y), x, y ∈ S.

Moreover,

Hg(x)+Hh(x)+2Hf (y) = Hf (2x)+2Hf (y) = 2Hf (x+y) = 2Hg(x)+2Hh(y),

whence
Hh(x) + 2Hf (y) = Hg(x) + 2Hh(y), x, y ∈ S.
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Fix y0 ∈ S arbitrarily and put α := 2Hf (y0), β := 2Hh(y0) to get the relation-
ship

Hh(x) + α = Hg(x) + β, x ∈ S.

Similarly, by fixing an x0 from S and setting γ := 1
2Hh(x0), δ := 1

2Hg(x0) we
arrive at

Hf (y) + γ = Hh(y) + δ, y ∈ S.

Now, with the aid of the embedding technics applied in the proof of Theorem
1, (we omit the details of that standard procedure) we deduce that the corre-
sponding functions H∗

f , H
∗
g and H∗

h mapping S into the group G∗ are pairwise
equal. This, in turn, forces the functions Hf , Hg and Hh to be pairwise equal,
as well. Therefore, we finish the proof by setting H := Hf = Hg = Hg. �
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MEAN VALUES OF MULTIPLICATIVE FUNCTIONS

ON THE SET OF Pk + 1, WHERE Pk RUNS OVER THE

INTEGERS HAVING k DISTINCT PRIME FACTORS

L. Germán (Paderborn, Germany)

Dedicated to the 60th anniversary of Professor Antal Járai

Abstract. We investigate the limit behaviour of

∑

n≤x

n∈Pk

g(n+ 1)

as x tends to infinity where g is multiplicative with values in the unit disc
and Pk runs over the integers having k distinct prime factors. We let k
vary in the range 2 ≤ k ≤ ε(x) log log x where ε(x) is an arbitrary function
tending to zero as x tends to infinity.

Throughout this work n denotes a positive integer and P (n), p(n) denote
the largest and the smallest prime factors of n, respectively. p, q with or without
suffixes will always denote prime numbers. As usual, the number of primes up
to x will be denoted by π(x), and logk x := log(logk−1 x) for all positive integers
k where log1 x = log x means the natural logarithm of x. If

n = pr11 · pr22 · · · prkk , p1 < p2 < . . . < pk, ri, i = 1, . . . , k(1)

are positive integers, pi, i = 1, . . . , k are distinct primes then let ω(n) := k. A
typical integer n for which ω(n) = k will be denoted by πk. We denote the set
of integers having k distinct prime factors with Pk, that is

Pk := {πk ∈ N}.
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The set of integers in Pk up to x is denoted by Pk(x). We introduce the
counting function for the set Pk in arithmetic progressions. If (d, l) = 1 then
let

πk(x, d, l) =
∑
πk≤x

πk≡l (mod d)

1.

In the special case d = l = 1 we use πk(x) instead of πk(x, 1, 1).

An arithmetical function g : N→ C is said to be multiplicative if g(nm) =
= g(n)g(m) holds for all integers n,m with (n,m) = 1. It is called additive if
g(nm) = g(n)+g(m) for (n,m) = 1 and is called strongly additive if additionally
g(pα) = g(p) holds for all p and α ∈ N.

In the middle of the twentieth century Delange did some pioneering work
concerning mean value estimations for multiplicative functions on the set N.
One of his results was the following (See [2])

Theorem (Delange). Let g be a multiplicative function with |g(n)| ≤ 1,
satisfying ∑

p

1− Re g(p)

p
<∞.

Then

1

x

∑
n≤x

g(n) =
∏
p≤x

(
1− 1

p

)(
1 +

∑
m≥1

g(pm)

pm

)
+ o(1)

as x tends to infinity.

Although this result provides sufficient condition for multiplicative functions
to have zero mean value, the full description of such multiplicative functions
was given by Wirsing [12] for real and by Halász [4] for complex multiplicative
functions of modulus ≤ 1. The result of Halász extends Delange’s theorem in
the following way:

Theorem (Delange, Wirsing, Halász). Let g be a multiplicative function
with |g(n)| ≤ 1, satisfying ∑

p

1− Re g(p)p−iτ

p
<∞

for some real τ . Then

1

x

∑
n≤x

g(n) =
xiτ

1 + iτ

∏
p≤x

(
1− 1

p

)(
1 +

∑
m≥1

g(pm)

pm(1+iτ)

)
+ o(1)
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as x tends to infinity. On the other hand, if there is no such τ then

1

x

∑
n≤x

g(n) = o(1) (x→∞).

Kátai in [7, 8] began to investigate the mean behaviour of multiplicative
functions on the set of shifted primes. Through the contribution of Hildebrand
[6] and Timofeev [11] it turned out that the situation is basically different from
the case of the whole set of natural numbers. Their result is

Theorem (Kátai, Hildebrand, Timofeev). Let g be a multiplicative function
with |g(n)| ≤ 1 and suppose that there are a real τ and a primitive character
χd modulo d for some modulus d such that∑

p

1− Reχd(p)f(p)p
−iτ

p

converges. Then

1

π(x)

∑
n≤x

f(p+ 1) =
μ(d)

ϕ(d)

xiτ

1 + iτ
×

×
∏
p≤x
p�d

(
1 +

∑
r≥1

χd(p
r)f(pr)p−riτ − χd(p

r−1)f(pr−1)p−(r−1)iτ

ϕ(pr)

)
+ o(1)

as x → ∞, which is not necessarily o(1) as x tends to infinity, if χd is a real
character.

The main result of this paper is

Theorem 1. Let g(n) be a multiplicative function of modulus one, such
that there are a primitive character χ (mod d) for some fixed d and a real τ
such that ∑

p

1− Reχ(p)g(p)p−iτ

p

converges. Let furthermore ε(x) be an arbitrary function tending to zero as x
tends to infinity. Then

πk(x)
−1

∑
n≤x

ω(n)=k

g(n+ 1) =

=
xiτ

1 + iτ

μ(d)

ϕ(d)

∏
p≤x
p�d

(
1− 1

p− 1
+
∑
α≥1

g(pα)p−iατχ(pα)

pα

)
+ o(1) (x→∞)

uniformly for all k, if 1 ≤ k ≤ ε(x) log log x.
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We will use the method of [3] since as we deduce the results from the
analogoue for DP + 1 where P denotes the set of primes.

Let

M(x, f,D) :=
∑

Dp+1≤x

f(Dp+ 1).

Theorem 2. Let f(n) be a multiplicative function of modulus 1. Let fur-
thermore d be a positive integer. Suppose that there is a real τ such that the
series ∑

p

|χ(p)f(p)piτ − 1|2
p

(2)

converges for some primitive character χ (mod d). Let 0 < ε < 1/2. Then(
π

(
x− 1

D

))−1

M(x, f,D) =

=
xiτ

1 + iτ

μ(d)

ϕ(d)

∏
p≤x
p�dD

(
1− 1

p− 1
+
∑
α≥1

f(pα)p−iατχ(pα)

pα

)
+ o(1) (x→∞)

holds uniformly for all x > 2 and D ≤ x1/2−ε with (d,D) = 1.

As an application of Theorem 2 we are able to analyze the mean behavior of
multiplicative functions on the set Pk+1 in some cases. We need the following

Lemma 1. Let ε(x) → 0 as x → ∞. Then there exist sequences yx → ∞,
δx → 0 as x→∞ such that

P (n) > x1−δx , yx < p(n), n is square-free(3)

hold for all but o(πk(x)) elements of Pk(x), uniformly for all

2 ≤ k ≤ ε(x) log log x as x→∞.

Proof. The following sets have zero relative density in Pk.

1. If A1 = {n ∈ Pk, n ≤ x : ∃ p2|n}, then we have

#A1 ≤
∑

pα≤x1/2

α≥2

πk−1

(
x

pα

)
+

∑
pα>x1/2

α≥2

x

pα
� πk(x)

k

log log x

∑
pα≤x1/2

α≥2

1

pα
+O(x3/4).

Here we used that

πk−1(x)

πk(x)
∼

k

log log x
(→ 0) (x→∞)



Mean values of multiplicative functions 129

holds uniformly for 2 ≤ k ≤ ε(x) log log x. This is a direct consequence of the
asymptotic estimation

πk(x) =
x

log x

log logk−1 x

(k − 1)!

(
1 +O

(
1

log log x

))
,(4)

which is uniform for 1 ≤ k ≤ ε(x) log log x (see for example in [9]).

2. If A2 = {n ∈ Pk, n ≤ x : p(n) < yx}, then we have

#A2 ≤
∑

pα≤x1/2

p<yx

πk−1

(
x

pα

)
+

∑
pα>x1/2

α≥2

x

pα
� πk(x)

k

log log x

∑
p<yx

1

p
+O(x3/4).

By means of these last two steps we can assume that p(n) > yx, and n is
square-free. Finally we have∑

πk≤x

P (πk)≤x1−δx

1�
∑

πk≤x1/2

1 +
∑

x1/2≤πk≤x

P (πk)≤x1−δx

1�

�x1/2 +
1

log x

∑
x1/2≤πk≤x

P (πk)≤x1−δx

log πk �

� 1

log x

∑
p≤x1−δx

πk−1

(
x

p

)
log p+ x1/2 �

� x

log x

logk−2 log x

(k − 2)!

∑
p≤x1−δx

log p

p log(x/p)
+ x1/2 �

� 1

δx
πk(x)

k

log log x

and the proof is finished. �

Proof of Theorem 1. The case k = 1 was proved by Kátai, Hildebrand
and Timofeev, and is included in Theorem 2. Therefore we can suppose that
k ≥ 2. Let Uk(x) be the set of those elements of Pk(x), for which (3) holds
true. Let Sx be the set of those πk−1, for which there exists at least one prime
p > P (πk−1) such that πk−1p ∈ Uk(x). Let p∗ = pπk−1

be the smallest p with
this property. Then πk−1p ∈ Uk(x) for all p∗ ≤ p ≤ x

πk−1
. Using Lemma 1

we have that πk−1 < xλx , with an appropriate λx → 0, as x tends to infinity.
Further,

P (πk−1) < p, and p(πk−1) > yx,
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where yx →∞ as x→∞, slowly. We obtain

(5)

∑
n≤x

ω(n)=k

g(n+ 1) =
∑

πk−1∈Sx

∑
p∗
πk−1

≤p≤ x
πk−1

g(πk−1p+ 1) + o(πk(x)) =

=
∑

πk−1∈Sx

M(g, x, πk−1)−
∑

πk−1∈Sx

∑
p≤p∗

πk−1

g(πk−1p+ 1) + o(πk(x))

as x→∞.

Let

ψ(x,D) :=
xiτ

1 + iτ

μ(d)

ϕ(d)

∏
p≤x
p�dD

(
1− 1

p− 1
+
∑
α≥1

f(pα)p−iατχ(pα)

pα

)
.

Note that using Lemma 1 we have yx ≤ p(πk−1), therefore in our case πk−1

and d are coprimes for large x. Furthermore,∑
πk−1∈Sx

π(p∗πk−1
)�x1/2 +

∑
πk−1∈Sx

∑
P (πk−1)<p<p∗

πk−1

1(6)

which, by the definition of Sx, equals o(πk(x)) as x tends to infinity. Thus, the
second sum on the most right hand side of (5) is o(πk(x)). For the estimation
of the first sum here we apply Theorem 2 and we deduce∑

n≤x
ω(n)=k

g(n+ 1) =
∑

πk−1∈Sx

ψ(x, πk−1)π(
x

πk−1
) + o(πk(x)) (x→∞).

Defining K(x,D) by the identity

ψ(x, 1) = ψ(x,D)K(x,D),

such that

K(x,D) =
∏
p≤x
p|D

(
1− 1

p− 1
+
∑
α≥1

f(pα)p−iατχ(pα)

pα

)

holds, we have that the left hand side of (5) equals

ψ(x, 1)
∑

πk−1∈Sx

π

(
x

πk−1

)
+

+
∑

πk−1∈Sx

π

(
x

πk−1

)
ψ(x, πk−1)[1−K(x, πk−1)] + o(πk(x)) (x→∞).
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Since yx ≤ p(πk−1), and since

K(x, πk−1) = exp

[ ∑
p≤x

p|πk−1

f(pα)χ(pα)piτ − 1

p
+O

( ∑
p≤x

p|πk−1

1

p2

)]
,

the right hand side of (5) equals

ψ(x, 1)
∑

πk−1∈Sx

π

(
x

πk−1

)
+ o(1)

∑
πk−1∈Sx

π

(
x

πk−1

)
+ o(πk(x)) (x→∞).

By the same argument as in the estimation of (5) and then using (6) again
we obtain

π−1
k (x)

∑
πk−1∈Sx

π

(
x

πk−1

)
→ 1 (x→∞)

and the assertion follows. �

In order to show Theorem 2 we need an analogoue of the Turán–Kubilius
inequality.

Lemma 2. Let 0 ≤ ε < 1 and let 0 < θx be an arbitrary sequence tending
to zero as x tends to infinity. Let D be a positive integer, and let x ≥ 2D. Let
h be a real strongly additive function and

hx(n) =
∑
pα||n

p≤( x−1
D

)1−θx

h(p).

Then

1

π(x−1
D )

∑
p≤(x−1)/D

∣∣∣∣∣hx(Dp+ 1)−
∑
q≤x
q�D

h(q)

ϕ(q)

∣∣∣∣∣
2

� 1

θx

∑
q≤x

|h(q)|2
q

(7)

uniformly for all x and all D ≤ xε.

Proof. With xD := (x− 1)/D let

h1,x(n) :=
∑
pα||n

p≤x
1/8
D

h(p) and h2,x(n) :=
∑
pα||n

x
1/8
D

<p≤x
1−θx
D

h(p).

Further, define

A(y) :=
∑
p≤y
q�D

h(p)

ϕ(p)
and B2(y) :=

∑
p≤y

|h(p)|2
p

.
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The left hand side of (7) is � Σ1 +Σ2 +Σ3, where

Σ1 =
1

π(xD)

∑
p≤xD

|h1,x(Dp+ 1)−A(x
1/8
D )|2,

Σ2 =
1

π(xD)

∑
p≤xD

|h2,x(Dp+ 1)|2,

Σ3 =
1

π(xD)

∑
p≤xD

|A(x)−A(x
1/8
D )|2.

Using the Cauchy–Schwarz inequality we have

Σ3 �
( ∑

x
1/8
D ≤p≤x

1

p

)( ∑
x
1/8
D ≤p≤x

|h(p)|2
p

)
�

∑
p≤x

|h(p)|2
p

.

In order to estimate Σ2 note that a positive integer, n ≤ x, can have at

most a bounded number of distinct prime divisors q > x
1/8
D . Thus, using the

Brun–Titchmarsh inequality (Theorem I.4.9 in [10]) we deduce

Σ2 =
1

π(xD)

∑
p≤xD

∣∣∣ ∑
q|Dp+1

h2,x(q)
∣∣∣2 � 1

π(xD)

∑
q≤x

1−θx
D

q�D

|h(q)|2π(xD, q, lD,q)�

� xD

π(xD)

∑
q≤x1−θx

D

|h(q)|2
q log(xD

q )
�

� 1

θx

∑
q≤x1−θx

D

|h(q)|2
q

.

Here we used that if Dp+ 1 = aq then there exists a unique residue class lD,q

(mod q) such that p ≡ lD,q (mod q) holds.

It remains to estimate Σ1. Performing the multiplications we obtain∑
p≤xD

∣∣∣h1,x(Dp+ 1)−A(x
1/8
D )

∣∣∣2 = S1 − 2S2 + S3,

where

S1 =
∑
p≤xD

|h1,x(Dp+ 1)|2,

S2 = A(x
1/8
D )

∑
p≤xD

h1,x(Dp+ 1),

S3 = A(x
1/8
D )2π(xD).
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Further,

(8)

S1 =
∑
p≤xD

(
∑

q|Dp+1

h1,x(q))
2 =

∑
q≤xD
q�D

h2
1,x(q)π(xD, q, lD,q)+

+
∑

q1,q2≤xD
q1 �=q2, q1�D, q2�D

h1,x(q1)h1,x(q2)π(xD, q1q2, lD,q1q2).

Since h1,x(q) = 0 for q > x
1/8
D , the Brun–Titchmarsh theorem is applicable

and we deduce that the first term on the right hand side of (8) does not exceed
cπ(xD)B2(x).

The second term on the right hand side of (8) equals

(9)

∑
q1,q2≤x

1/8
D

q1 �=q2, q1�D, q2�D

h1,x(q1)h1,x(q2)
π(xD)

ϕ(q1q2)
+

+
∑

q1,q2≤x
1/8
D

q1 �=q2, q1�D, q2�D

h1,x(q1)h1,x(q2){π(xD, q1q2, lD,q1q2)−
π(xD)

ϕ(q1q2)
}.

Let T1, T2 be the sums in (9). We have

T1

π(xD)
= A2(x

1/8
D )−

∑
q1≤x

1/8
D

q1�D

h2
1,x(q1)

ϕ2(q1)
= A2(x

1/8
D ) +O(B2(x)).

For T2 we use the Cauchy–Schwarz inequality to obtain

T 2
2 �

∑
q1,q2≤x

1/8
D

q1 �=q2, q1�D, q2�D

h2
1,x(q1)

ϕ(q1)

h2
1,x(q2)

ϕ(q2)
×

×
∑

q1,q2≤x
1/8
D

q1 �=q2, q1�D, q2�D

ϕ(q1q2)

{
π(xD, q1q2, lD,q1q2)−

π(xD)

ϕ(q1q2)

}2

�

�B4(x)
∑

q1,q2≤x
1/8
D

q1 �=q2, q1�D, q2�D

ϕ(q1q2)

{
π(xD, q1q2, lD,q1q2)−

π(xD)

ϕ(q1q2)

}2

.

Using the Brun–Titchmarsh inequality

T 2
2 � B4(x)π(xD)

∑
q1,q2≤x

1/8
D

q1 �=q2, q1�D, q2�D

∣∣∣∣π(xD, q1q2, lD,q1q2)−
π(xD)

ϕ(q1q2)

∣∣∣∣ ,
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and an application of the Bombieri–Vinogradov theorem (Chapter 28. in [1])
shows

T2 � B2(x)
π(xD)

logA xD

,

where A > 0 is an arbitrary large costant. Since by the Cauchy–Schwarz
inequality we have

A(y) =
∑
q≤y
q�D

h(q)

ϕ(q)
�

(∑
q≤y

h2(q)

q

)1/2

log log1/2 y � B(y) log log1/2 y,

for y ≥ e2, in a similar way as in the estimation of T2 we deduce

S2 −A2(x
1/8
D )π(xD)�A(x

1/8
D )B(x)

π(xD)

logA xD

�

�B2(x) log log xD
π(xD)

logA xD

�

�B2(x)π(xD),

and the proof is finished. �

Lemma 3. Let D, q be two coprime positive integers and let (lD,q =)lD be
the unique residue class satisfying DlD ≡ 1 (mod q). Let further 0 < ε < 1/2
and xD := (x− 1)/D whenever x > 2 and let a > 1−2ε

1+2ε . Then∑
q>xa

D
q prime, q�D

qπ2(xD, q, lD)� π2(xD)(10)

holds uniformly for all x > 2 and D ≤ x1/2−ε. The constant implied by �
depends on a.

Proof. The sum on the left hand side of (10) equals∑
q>xa

D

q
∑

a1q=Dp1+1

a1≤x/q

∑
a2q=Dp2+1

a2≤x/q

1 ≤2x
∑

a1≤xx
−a
D

(a1,D)=1

1

a1

∑
a2<a1

(a2,D)=1

∑
a1q=Dp1+1≤x
a2q=Dp2+1≤x

1.(11)

Denote the inner sum by (Σ(a1, a2) =)Σ. It is nonempty only if a1 ≡ a2
(mod D). Suppose, a1, a2 is fixed and

q = Dn+ la1D.
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Then

Dp1 + 1 = a1Dn+ a1la1D, Dp2 = a2Dn+ a2la1D.

Thus, the primes we want to count in Σ satisfy

q = Dn+ la1D,

p1 = a1n+ tDa1
, p2 = a2n+ tDa2

,

where

a1la1D −DtDa1
= 1 and a2la1D −DtDa2

= 1.

It follows,

Σ� #
{
n ≤ xD

a1
: q = Dn+ la1D, p1 = a1n+ tDa1

, p2 = a2n+ tDa2
primes

}
.

Let

E = Da1a2(a1 − a2),

and let �(p) be the number of solutions of

(Dn+ la1D)(a1n+ tDa1
)(a2n+ tDa2

) ≡ 0 (mod p).

Since E ≤ xA
D for some appropriate A > 0, by Theorem 5.7 of [5]

Σ� xD

a1 log
3 xD

a1

∏
p

(1− �(p)− 1

p− 1
)(1− 1

p
)−2.

Noting that (D, a1a2) = 1 we have

�(p) =

⎧⎪⎨⎪⎩
1 if p|D, p|a1−a2

D or p|a1, p|a2
2 if p|D, p � a1−a2

D or p|a1a2, p � (a1, a2)

3 otherwise.

Now, making use of the inequality log(1 − z) = 1 + z + O(z2) which holds
uniformly for all real numbers |z| ≤ 1/2 we obtain

∏
p

(
1− �(p)− 1

p− 1

)(
1− 1

p

)−2

�

�
∏
p|D

(
1 +

1

p

) ∏
p| a1−a2

D

(
1 +

1

p

)∏
p|a1

(
1 +

2

p

)∏
p|a2

(
1 +

2

p

)
.
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Thus, the right hand side of (11) is at most

c
x2

D

∏
p|D

(
1 +

1

p

) ∑
a1≤xx

−a
D

(a1,D)=1

1

a21 log
3 xD

a1

∏
p|a1

(
1 +

2

p

)
×

×
∑

a2≤a1
a1≡a2 (mod D)

∏
p| a1−a2

D

(
1 +

1

p

)∏
p|a2

(
1 +

2

p

)
.

Since |ab| ≤ a2 + b2 holds for all real a, b we deduce

∑
a2≤a1

a1≡a2 (mod D)

∏
p| a1−a2

D

(
1 +

1

p

)∏
p|a2

(
1 +

2

p

)
�

�
∑

a2≤a1
a1≡a2 (mod D)

{ ∑
d| a1−a2

D

2ω(d)μ2(d)

d
+
∑
d|a2

4ω(d)μ2(d)

d

}
�

�
∑
d≤ a1

D

2ω(d)μ2(d)

d

∑
a2≤a1

a2≡a1 (mod D)
a1−a2

D
≡0 (mod d)

1 +
∑
d≤a1

(d,D)=1

4ω(d)μ2(d)

d

∑
a2≤a1

a2≡0 (mod d)
a1≡a2 (mod D)

1�

� a1
D

.

Since a > 1−2ε
1+2ε and a1 ≤ xx−a

D we have log xD

a1
�a log x� log xD. Further,

∑
a1≤xx

−a
D

(a1,D)=1

1

a1

∏
p|a1

(
1 +

2

p

)
=

∏
p≤xx

−a
D

p�D

(
1 +

1

p

(
1 +

2

p

))
�

�
∏

p≤xx−a
D

(
1 +

1

p

)∏
p|D

(
1 +

1

p

)−1

�

� log xD

∏
p|D

(
1 +

1

p

)−1

.

Thus, the right hand side of (11) does not exceed

c
x2
D

log3 xD

∏
p|D

(
1 +

1

p

) ∑
a1≤xx

−a
D

(a1,D)=1

1

a1

∏
p|a1

(
1 +

2

p

)
� π2(xD),

which proves the assertion. �
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Proof of Theorem 2. First suppose that τ = 0. We set r = log log x, and
xD = x−1

D . Let

KD(x) := {Dp+ 1 ≤ x : p prime}.

We have

(12)

#{n ∈ KD(x) | ∃q2|n, q > y} ≤

≤
∑

y<q<( x−1
D )a

π

(
x− 1

D
, q2, lq

)
+

x− 1

D

∑
q≥( x−1

D )a

1

q2
= δ(y)π

(
x− 1

D

)
,

where δ(y)→ 0 (y →∞). Let f∗ be a multiplicative function defined by

f∗(pα) =

⎧⎪⎨⎪⎩
f(pα), if p ≤ r

f(p), if r < p ≤ x1−ϑx

D

χ(p), otherwise.

Since χ(q) �= 0 for q > d, there exists a function g(q) ∈ [−π, π) such that
f(q) = χ(q)eig(q). By (12)∣∣∣∣∣ ∑

Dp+1≤x

{f(Dp+ 1)− f∗(Dp+ 1)}
∣∣∣∣∣ ≤∑

Dp+1≤x

∃q2|Dp+1, q>r

1 +
∑

Dp+1≤x

∃q|Dp+1, q>x
1−ϑx
D

|eig̃(Dp+1) − 1| ≤

≤
∑

Dp+1≤x

∃q|Dp+1, q>x
1−ϑx
D

|eig̃(Dp+1) − 1|+ o(π(xD)) (x→∞),

where

g̃(pα) =

{
g(p), if x1−ϑx

D < q, α = 1

0, otherwise.

Then ∑
Dp+1≤x

∃q|Dp+1, q>x
1−ϑx
D

|eig̃(Dp+1) − 1| ≤
∑

Dp+1≤x

∃q|Dp+1, q>x
1−ϑx
D

|g̃(Dp+ 1)|

≤
∑

x1−ϑx
D <q≤x

|g(q)|π(xD, q, tD),
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where (tD,q =)tD is the unique residue class satisfying

DtD ≡ −1 (mod q).

Applying the Cauchy–Scwarz inequality then using Lemma 3 we obtain∑
x1−ϑx
D <q≤x

|g(q)|π(xD, q, tD)�

�
( ∑

x1−ϑx
D <q≤x

g(q)2

q

)1/2( ∑
x1−ϑx
D <q≤x

qπ2(xD, q, tD)

)1/2

�

� π(xD)

( ∑
x1−ϑx
D <q≤x

g(q)2

q

)1/2

.

Noting that

|g(q)|2 � |f(q)χ(q)− 1|2,

by (2) we obtain∑
Dp+1≤x

{f(Dp+ 1)− f∗(Dp+ 1)} = o(π(xD)) (x→∞).(13)

Let fr be a further multiplicative function defined by

fr(p
α) =

{
f(pα), if p ≤ r

χ(p), if r < p.

Next we give an alternative representation of M(x, fr, D). It can be written
as follows

∑
Dp+1≤x

fr(Dp+ 1) =
∑

m≤x+1
P (m)≤r
(D,m)=1

f(m)
∑
p≤xD

p≡lD (mod m)

(
Dp+1

m
,P(r))=1

χ

(
Dp+ 1

m

)
+ Err(x, r),

(14)

where

P(r) :=
∏
p≤r

p,
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and (lD,m =)lD is the unique residue class satisfying

DlD ≡ −1 (mod m),

and by (12)

Err(x, r)�
∑

Dp+1≤x

∃q2|Dp+1, r<q

1 = o(π(xD)) (x→∞).

Furthermore, (Dp+1
m ,P(r)) = 1. Hence, Dp+1

m is always odd and there is at

most one prime p satisfying Dp+1 = mDp+1
m if D and m have the same parity.

The contribution of these integers to the sum on the right hand side of (14) is
at most

∑
m≤x

P (m)≤r

1� x exp

(
−1

2

log x

log r

)
,

which inequality is well known in number theory (Theorem III.5.1 in [10]). The
sum over the integers m > er on the right hand side of (14) is at most

∑
er≤m≤√

x
P (m)≤r

π(xD,m, lD) +
∑

√
x≤m≤x

P (m)≤r

xD

m
= Σ1 +Σ2.

Using the Brun–Titchmarsh theorem we obtain

Σ1 � π(xD)
∑

er≤m≤√
x

P (m)≤r

1

ϕ(m)
�π(xD)

r

∑
m≤x

P (m)≤r

logm

ϕ(m)
�

�π(xD)

r

∑
p≤r

∑
α

log pα
∑

mpα≤x
P (m)≤r, (m,p)=1

1

ϕ(pαm)
�

�π(xD) log r

r

∑
p≤r

log p

p
�

�π(xD)
log2 r

r
.

Further, using the inequality | log(1− y)− y| ≤ 2y2, which is valid for all real
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y with |1− y| ≤ 1/2 we have

Σ2 � xDx−1/8
∑
m≤x

P (m)≤r

1

m3/4
�xDx−1/4

∏
p≤r

(
1− 1

p3/4

)−1

�

�xDx−1/4 exp

(∑
p≤r

1

p3/4

)
�

�xDx−1/4er.

The inner sum on the right hand side of (14) equals∑
Dp≤x

Dp≡−1 (mod m)

χd

(
Dp+ 1

m

) ∑
δ|(Dp+1

m ,P(r))

μ(δ) =

=
∑

δ|P(r)
(δ,Dd)=1

μ(δ)
∑
Dp≤x

Dp+1≡0 (mod δm)

χd

(
Dp+ 1

m

)
=

=
∑

δ|P(r)
(δ,Dd)=1

μ(δ)

d∑
b=1

(b,d)=1

χd(b)J(x,m, δ, b),

where

Jm(x,m, δ, b) := #
{
p ≤ xD : Dp+ 1 ≡ 0 (mod δm), Dp+1

m ≡ b (mod d)
}
.

Note that Jm(x,m, δ, b) � 1 for all b with (bm − 1, d) �= 1. There is a unique
lδ (mod d) such that δlδ ≡ b (mod d), therefore

Dp+ 1 = cδm and Dp+ 1 = mb+ tdm,

implies

Dp+ 1 ≡ mlδδ (mod mδd).

Thus,

Jm(x,m, δ, b) = #{p ≤ xD : Dp+ 1 ≡ mδlδ (mod δdm)}.

We arrive at

M(x, fr, D) =
∑′

m≤er

P (m)≤r

f(m)

d∑
b=1

(b,d)=1
(bm−1,d)=1

χd(b)
∑

δ|P(r)
(δ,Dd)=1

μ(δ)π(xD, δdm,mδlδ)+

+ o(π(xD)) (x→∞),(15)
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where Σ′ indicates that m and D are of opposite parity. The right hand side
of (15) equals

∑′

m≤er

P (m)≤r

f(m)

d∑
b=1

(b,d)=1
(bm−1,d)=1

χd(b)
∑

δ|P(r)
(δ,Dd)=1

μ(δ)
π(xD)

ϕ(δdm)
+

+O
( ∑

δ|P(r)
(δ,Dd)=1

∑
m≤er

P (m)≤r

∣∣∣π(xD, δdm,mδlδ)−
π(xD)

ϕ(δdm)

∣∣∣) = M + Err2(x, r).

Applying the Cauchy–Schwarz inequality and then the Brun–Titchmarsh the-
orem we obtain that Err22(x, r) is at most

c

( ∑
δ≤

√
x√

D logA x

4ω(δ) max
(l,δ)=1

∣∣∣π(xD, δ, l)− π(xD)

ϕ(δ)

∣∣∣)2

�

�
∑

δ≤
√

x√
D logA x

16ω(δ)

ϕ(δ)

∑
δ≤

√
x√

D logA x

ϕ(δ) max
(l,δ)=1

∣∣∣π(xD, δ, l)− π(xD)

ϕ(δ)

∣∣∣2 �
�

∏
p≤x

(
1 +

16

p

)
π(xD)

∑
δ≤

√
x√

D logA x

max
(l,δ)=1

∣∣∣π(xD, δ, l)− π(xD)

ϕ(δ)

∣∣∣,
which by the Bombieri–Vinogradov theorem does not exceed π2(xD)

logA x
, where

A > 0 is an arbitrary large fixed constant.

Since

ϕ(δdm) = δdm
∏
p|dm

(
1− 1

p

) ∏
p|δ

p�dm

(
1− 1

p

)
= ϕ(dm)δ

∏
p|δ

p�dm

(
1− 1

p

)
,

we have ∑
δ|P(r)

(δ,Dd)=1

μ(δ)

ϕ(δmd)
=

1

ϕ(dm)

∏
p≤r
p�Dd
p|dm

(
1− 1

p

) ∏
p≤r
p�Dd
p�dm

(
1− 1

p− 1

)
=

=
1

ϕ(dm)

∏
p≤r
p�Dd
p|m

(
1− 1

p

) ∏
p≤r
p�Dd
p�m

(
1− 1

p− 1

)
.
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Further, by the inclusion-exclusion principle and by the orthogonality relation
of the Dirichlet characters we have

d∑
b=1

(b(bm−1),d)=1

χ(b) =
∑

(b,d)=1

χ(b)
∑
k|d

μ(k)

ϕ(k)

∑
χ (mod k)

χk(bm).

Thus,

(16)

1

π(xD)
M =

∑
(b,d)=1

χ(b)
∑
k|d

μ(k)

ϕ(k)

∑
χ (mod k)

χk(b)×

×
∑′

m
P (m)≤r

f(m)χk(m)

ϕ(dm)

∏
p≤r
p�Dd
p|m

(
1− 1

p

) ∏
p≤r
p�Dd
p�m

(
1− 1

p− 1

)
+ Err3(r),

where

Err3(r)�
∑
m>er

P (m)≤r

1

ϕ(dm)

∏
p≤r
p�Dd
p|m

(
1− 1

p

) ∏
p≤r
p�Dd
p�m

(
1− 1

p− 1

)
�

�
∏
p≤r
p�Dd

(
1− 1

p

) ∑
m>er

P (m)≤r

1

ϕ(m)
�

� log2 r

r
.

Keeping in mind that m and D has opposite parity

∑′

m
P (m)≤r

f(m)χk(m)

ϕ(dm)

∏
p≤r
p�Dd
p|m

(
1− 1

p

) ∏
p≤r
p�Dd
p�m

(
1− 1

p− 1

)
(17)

can be written as

∏
p≤r
p�Dd

(
1− 1

p− 1
+
∑
α≥1

f(pα)χk(p
α)

pα

) ∏
p≤r
p�2D
p|d

(
1 +

∑
α≥1

f(pα)χk(p
α)

pα

)
.
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Thus, the first term on the right hand side of (16) equals

(18)

d∑
b=1

(b,d)=1

χ(b)

ϕ(d)

∑
k|d

μ(k)

ϕ(k)
×

×
∑

χ (mod k)

χk(b)
∏
p≤r
p�dD

(
1− 1

p− 1
+
∑
α≥1

f(pα)χk(p
α)

pα

)
×

×
∏
p≤r

p|d, p�2D

(
1 +

∑
α≥1

f(pα)χk(p
α)

pα

)
.

Since the character induced by χk · χ is not the principal character if χk �= χ
we obtain using Dirichlet’s theorem in arithmetic progressions that

∑
z≤p≤r

|1− χk · χ(p)|2
p

� log

(
log r

log z

)
� log

(
log3 x

log4 x

)
,

if z = log3 x. Here we used that χk · χ(p) is at most a ϕ(d)-th root of unity.
Further,

|χk(p)f(p)− 1|2 � |1− χ(p)χk(p)|2 − |1− χ(p)f(p)|2,

therefore ∑
z≤p≤r

|1− χk(p)f(p)|2
p

�

�
∑

z≤p≤r

|1− χk(p)χ(p)|2
p

+O
( ∑

z≤p≤r

|1− χ(p)f(p)|2
p

)
�

� log

(
log3 x

log4 x

)
+ o(1) (x→∞).

Thus,∣∣∣ ∏
p≤r
p�dD

(1− 1

p− 1
+
∑
α≥1

f(pα)χk(p
α)

pα
)
∣∣∣� ∣∣∣exp(∑

p≤r

f(p)χk(p)− 1

p

)∣∣∣�
� exp

(
−

∑
z≤p≤r

1− Re f(p)χk(p)

p

)
=

= o(1) (x→∞).
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Putting it back into (18) we deduce

(19)

1

π(xD)
M(x, fr, D) =

μ(d)

ϕ(d)

∏
p≤r
p�dD

(
1− 1

p− 1
+
∑
α≥1

f(pα)χ(pα)

pα

)
×

×
∏
p≤r

p|d, p�2D

(
1 +

∑
α≥1

f(pα)χ(pα)

pα

)
+ o(1) (x→∞).

Since χ(pα) = 0 for all p | d, introducing the notation

P (y) :=
∏
p≤y
p�dD

(
1− 1

p− 1
+
∑
α≥1

f(pα)χ(pα)

pα

)
,

we proved that

π(xD)−1M(x, fr, D) =
μ(d)

ϕ(d)
P (r) + o(1) (x→∞).(20)

Here we note that if (2) converges for τ = 0 then 1� |P (r)| ≤ 1. Now we
can prove that

μ(d)

ϕ(d)
P (xD)

is a good approximation of the sum M(x, f,D). Now∣∣∣π−1(xD)M(x, f,D)− μ(d)

ϕ(d)
P (xD)

∣∣∣ ≤
≤
∣∣∣π−1(xD)M(x, f∗, D)− π−1(xD)M(x, fr, D)

P (xD)

P (r)

∣∣∣+
+π(xD)−1|M(x, f∗, D)−M(x, f,D)

∣∣∣+
+
∣∣∣μ(d)
ϕ(d)

P (xD)− π−1(xD)M(x, fr, D)
P (xD)

P (r)

∣∣∣,
therefore by (13) and by (20) we have to show that

π−1(xD)
∣∣∣M(x, f∗, D)−M(x, fr, D)

P (xD)

P (r)

∣∣∣ = o(1) (x→∞).(21)

We note that, if d < r, then

|f∗(pα)| = |fr(pα)| = 1.
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Hence there is a strongly additive function g∗r (p) ∈ (−π, π] with

f∗
r (n) = f∗ · fr(n) = eig

∗
r (n).

We note that if

p ≤ r, or p > x1−ϑx

D , then g∗r (p) = 0.

By Lemma 2 we have∑
Dp+1≤x

∣∣∣g∗r (Dp+ 1)−
∑
q≤xD
q�D

g∗r (q)
q

∣∣∣2 � 1

ϑx
π(xD)

∑
p≤xD

|g∗r (p)|2
p

.(22)

Let

A(x) :=
∑
p≤xD
p�D

g∗r (p)
p

.

We obtain that the left hand side of (21) is at most

c

π(xD)

∣∣∣ ∑
Dp+1≤x

f∗(Dp+ 1)− fr(Dp+ 1)
P (xD)

P (r)

∣∣∣�
� 1

π(xD)

∑
Dp+1≤x

∣∣∣f∗
r (Dp+ 1)− P (xD)

P (r)

∣∣∣�
� 1

π(xD)

∑
Dp+1≤x

∣∣f∗
r (Dp+ 1)− exp[iA(x)]

∣∣+ ∣∣∣exp[iA(x)]− P (xD)

P (r)

∣∣∣ =
= Σ′

1 +Σ′
2.

Using the Cauchy–Schwarz inequality again we obtain

Σ′
1 = π(xD)−1

∑
Dp+1≤x

∣∣∣exp[i(g∗r (Dp+ 1)−A(x)
)]
− 1

∣∣∣ ≤
≤ π(xD)−1/2

( ∑
Dp+1≤x

|g∗r (Dp+ 1)−A(x)|2
)1/2

.

Thus, by (22) we deduce that Σ1 is at most(
c

ϑx

∑
p≤xD
p�D

|g∗r (p)|2
p

)1/2

.
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Further,

|g∗r (p)|2 � |f∗
r (p)− 1|2 = |f(p)− fr(p)|2,

therefore

Σ′
1 �

(
1

ϑx

∑
r≤p≤x

|χ(p)f(p)− 1|2
p

)1/2

,

which according to condition (2) tends to zero as r →∞ with a suitable choice
of ϑx.

We have to estimate Σ′
2. It can be written as∣∣∣∣∣1− ∏

r<p≤xD
p�D

(
1− 1

p− 1
+

∑
m≥1

f(pm)χ(pm)

pm

)
exp

(
−i

∑
r<p≤xD

p�D

g∗r (p)
p

)∣∣∣∣∣,
which equals ∣∣∣∣∣1− exp

[
O
( ∑
r<p≤xD

|f(p)χ(p)− 1|2
p

+
∑
r<p

1

p2

)]∣∣∣∣∣,
which again tends to zero as x → ∞, such that (21) follows. Finally we note
that x1−ε < xD, therefore we have

|P (xD)− P (x)| �
∣∣∣∣∣ ∏
xD<p≤x

(
1 +

f(p)χ(p)− 1

p
+O

( 1

p2

))
− 1

∣∣∣∣∣ =
=

∣∣∣∣∣exp
( ∑

xD<p≤x

f(p)χ(p)− 1

p
+O

( 1

p2

))
− 1

∣∣∣∣∣,
which tends to zero as x→∞ inasmuch as

(23)

∣∣∣∣∣ ∑
xD<p≤x

f(p)χ(p)− 1

p

∣∣∣∣∣�
�

( ∑
xD<p≤x

1

p

)1/2( ∑
xD<p≤x

|f(p)χ(p)− 1|2
p

)1/2

= o(1) (x→∞).

We proved Theorem 2 in the case τ = 0.
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Now consider the case of an arbitrary τ . We proved that

π(xD)−1M(x, f(n)n−iτ , D) =
μ(d)

ϕ(d)

∏
p≤x
p�dD

(
1− 1

p− 1
+
∑
α≥1

f(pα)p−iατχ(pα)

pα

)
+

+ o(1) =: ψ(x) + o(1)

as x→∞. Using a summation by parts we obtain that∑
Dp+1≤x

f(Dp+ 1) =xiτ
∑

Dp+1≤x

f(Dp+ 1)(Dp+ 1)−iτ

− iτ

x∫
2

∑
Dp+1≤u

f(Dp+ 1)(Dp+ 1)−iτuiτ−1 du.(24)

If D < xε, then D < xγε′ with some other ε < ε′ < 1 and an appropriate
0 ≤ γ < 1. Therefore the estimation

π

(
u− 1

D

)−1

M(u, f(n)n−iτ , D) =

=
μ(d)

ϕ(d)

∏
p≤u
p�dD

(
1− 1

p− 1
+
∑
α≥1

f(pα)p−iατχ(pα)

pα

)
+ o(1) (x→∞)

remains valid in the range xγ < u < x. Thus, we can estimate the integral on
the right hand side of (24) in this range as

(25)

x∫
xγ

∑
Dp+1≤u

f(Dp+ 1)(Dp+ 1)−iτuiτ−1 du =

=
μ(d)

ϕ(d)

x∫
xγ

π(uD)ψ(u)uiτ−1 du+ o(1)

x∫
xγ

1

D log u
du (x→∞).

Now if xγ ≤ u ≤ x, then as in (23) we have

|ψ(x)− ψ(u)| = o(1)

as x→∞. Therefore the right hand side of (25) equals

π(xD)
xiτ

1 + iτ

μ(d)

ϕ(d)
ψ(x) + o(π(xD)) (x→∞).

Using the trivial bound

|M(u, f(n)niτ , D)| ≤ π(uD),
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we have that the integral on the right hand side of (24) in the range 2 ≤ u ≤ xγ

is not more than

O
(

1

D

xγ∫
2D+1

1

log(u/D)
du

)
�

xγ/D∫
2

1

log(u)
du = o(π(xD)) (x→∞).

In summary we have

∑
Dp+1≤x

f(Dp+ 1) = π(xD)
xiτ

1 + iτ

μ(d)

ϕ(d)
ψ(x) + o(π(xD)) (x→∞),

as asserted. �
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entropies on open domain depending on a real parameter α, which is based
on recursivity and semisymmetry. In cases α = 1 and α = 0 we use a weak
regularity assumption additionally while in the other cases no regularity
assumptions are made at all.

1. Introduction and preliminaries

Throughout this paper N, R, and R+ will denote the sets of all positive in-
tegers, real numbers, and positive real numbers, respectively. For all 2 ≤ n ∈ N
let

Γ◦
n =

{
(p1, . . . , pn) ∈ Rn

∣∣∣∣ pi ∈ R+, i = 1, . . . , n,

n∑
i=1

pi = 1

}
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and

Γn =

{
(p1, . . . , pn) ∈ Rn

∣∣∣∣ pi ≥ 0, i = 1, . . . , n,

n∑
i=1

pi = 1

}
.

Furthermore, for a fixed α ∈ R, define the function Dα
n(·|·) : Γ◦

n × Γ◦
n → R by

(1.1) Dα
n(p1, . . . , pn|q1, . . . , qn) = −

n∑
i=1

pi lnα

(
qi
pi

)
,

where

lnα(x) =

⎧⎪⎨⎪⎩
x1−α − 1

1− α
, if α �= 1

ln(x), if α = 1

(x > 0).

The sequence (Dα
n) is called the Shannon relative entropy (or Kullback–Leibler

entropy or Kullback’s directed divergence) if α = 1, and the Tsallis relative
entropy if α �= 1, respectively. (D1

n) is introduced and extensively discussed in
Kullback [12] and Aczél–Daróczy [2], respectively. For 0 ≤ α �= 1, (Dα

n) was
introduced and discussed in Shiino [15], Tsallis [17], and Rajagopal–Abe [14]
from physical point of view, and in Furuichi–Yanagi–Kuriyama [8] and Furuichi
[7] from mathematical point of view, respectively. In [7] and also in Hobson [9],
several fundamental properties of (Dα

n) are listed and it is proved that some of
them together determine (Dα

n), up to a constant factor.

In this note, we follow the method of the basic references [2] and Ebanks–
Sahoo–Sander [6] of investigating characterization problems of information
measures. We prove a characterization theorem similar to those of [9] and
[7], and we point out that the regularity conditions (say, continuity) can be
avoided if α /∈ {0, 1}, and can essentially be weakened if α ∈ {0, 1}.

In what follows, a sequence (In) of real-valued functions In, (n ≥ 2) on
Γ◦
n × Γ◦

n or on Γn × Γn is called a relative information measure on the open
or closed domain, respectively. In the closed domain case, however, the ex-
pressions 0

0+0 ,
0

0+...+0 , 0
α, 01−α, lnα

0
0 can appear. Therefore, throughout the

paper, the conventions

0

0 + 0
=

0

0 + . . .+ 0
= 0α = 01−α = lnα

0

0
= 0

are always adapted (see also [3]).

Our characterization theorem for the Shannon and the Tsallis relative en-
tropies will be based on the following two properties.
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Definition 1.1. Let α ∈ R. The relative information measure (In) is α–
recursive on the open or closed domain, if for any n ≥ 3 and

(p1, . . . , pn), (q1, . . . , qn) ∈ Γ◦
n or Γn,

respectively, the identity

In (p1, . . . , pn|q1, . . . , qn) =
= In−1 (p1 + p2, p3, . . . , pn|q1 + q2, q3, . . . , qn)+

+(p1 + p2)
α(q1 + q2)

1−αI2

(
p1

p1 + p2
,

p2
p1 + p2

∣∣∣∣ q1
q1 + q2

,
q2

q1 + q2

)
holds. We say that (In) is 3-semisymmetric on the open or closed domain, if

I3 (p1, p2, p3|q1, q2, q3) = I3 (p1, p3, p2|q1, q3, q2)

is fulfilled for all (p1, p2, p3), (q1, q2, q3) ∈ Γ◦
3 or Γ3, respectively.

The following lemma shows how the initial element of an α–recursive relative
information measure (In) determines (In) itself.

Lemma 1.2. Let α ∈ R and assume that the relative information measure
(In) is α–recursive on the open domain and define the function f :]0, 1[2→ R
by

f(x, y) = I2(1− x, x|1− y, y)
(
x, y ∈]0, 1[

)
.

Then, for all n ≥ 3 and for arbitrary, (p1, . . . , pn), (q1, . . . , qn) ∈ Γ◦
n

In(p1, . . . , pn|q1, . . . , qn) =

=
n∑

i=2

(p1 + p2 + . . .+ pi)
α(q1 + q2 + . . .+ qi)

1−α×

×f
(

pi
p1 + p2 + . . .+ pi

,
qi

q1 + q2 + . . .+ qi

)
holds.

Proof. The proof runs by induction on n. If we use the α–recursivity of
(In) and the definition of the function f , we obtain that

I3(p1, p2, p3|q1, q2, q3) =
= I2(p1 + p2, p3|q1 + q2, q3) + (p1 + p2)

α(q1 + q2)
1−α×

×I2
(

p1
p1 + p2

,
p2

p1 + p2

∣∣∣∣ q1
q1 + q2

,
q2

q1 + q2

)
=

=

3∑
i=2

(p1 + . . .+ pi)
α(q1 + . . .+ qi)

1−αf

(
pi

p1 + . . . pi
,

qi
q1 + . . .+ qi

)
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is fulfilled for all (p1, p2, p3), (q1, q2, q3) ∈ Γ◦
3, that is, the statement is true

for n = 3. Assume now that the statement holds for some 3 < n ∈ N.
We will prove that in this case the proposition holds also for n + 1. Let
(p1, . . . , pn+1), (q1, . . . , qn+1) ∈ Γ◦

n+1 be arbitrary. Then the α–recursivity and
the induction hypothesis together imply that

In+1(p1, . . . , pn+1|q1, . . . , qn+1) = In(p1 + p2, . . . , pn+1|q1 + q2, . . . , qn+1)+

+(p1 + p2)
α(q1 + q2)

1−αI2

(
p1

p1 + p2
,

p2
p1 + p2

∣∣∣∣ q1
q1 + q2

,
q2

q1 + q2

)
=

=

n+1∑
n=3

((p1 + p2) + p3 . . .+ pi)
α((q1 + q2) + p3 + . . .+ qi)

1−α×

×f
(

pi
(p1 + p2) + . . .+ pi

,
qi

(q1 + q2) + . . .+ qi

)
+

+(p1 + p2)
α(q1 + q2)

1−αI2

(
p1

p1 + p2
,

p2
p1 + p2

∣∣∣∣ q1
q1 + q2

,
q2

q1 + q2

)
=

=

n+1∑
i=2

(p1 + p2 + . . .+ pi)
α(q1 + q2 + . . .+ qi)

1−α·

·f
(

pi
p1 + p2 + . . .+ pi

,
qi

q1 + q2 + . . .+ qi

)
,

that is, the statement holds also for n+ 1, which ends the proof. �

2. The characterization

We begin with the following

Theorem 2.1. For any α ∈ R the relative entropy (Dα
n) is an α–recursive

relative information measure on the open domain.

Proof. In the proof, we will use the identities

lnα(xy) = lnα(x) + lnα(y) + (1− α) lnα(x) lnα(y),

lnα

(
1

x

)
= −xα−1 lnα(x)
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several times, which hold for all α ∈ R and x, y ∈ R+. Let n ≥ 3 and

(p1, . . . , pn), (q1, . . . , qn) ∈ Γ◦
n

be arbitrary. Then

(p1 + p2)
α(q1 + q2)

1−αD2

(
p1

p1 + p2
,

p2
p1 + p2

∣∣∣∣ q1
q1 + q2

,
q2

q1 + q2

)
=

= (p1 + p2)
α(q1 + q2)

1−α×

×
(
− p1
p1 + p2

lnα

(
p1 + p2
q1 + p2

q1
p1

)
− p2

p1 + p2
lnα

(
p1 + p2
q1 + q2

q2
p2

))
=

= (p1 + p2)
α(q1 + q2)

1−α

(
− lnα

(
p1 + p2
q1 + q2

)
+

(
1 + (1− α) lnα

(
p1 + p2
q1 + q2

))
×

×
(
− p1
p1 + p2

lnα

(
q1
p1

)
− p2

p1 + p2
lnα

(
q2
p2

)))
=

= (p1 + p2) lnα

(
q1 + q2
p1 + p2

)
+

[(
q1 + q2
p1 + p2

)1−α

− (1− α) lnα

(
q1 + q2
p1 + p2

)]
×

×
[
−p1 lnα

q1
p1
− p2 lnα

q2
p2

]
=

= (p1 + p2) lnα

(
q1 + q2
p1 + p2

)
− p1 lnα

(
q1
p1

)
− p2 lnα

(
q2
p2

)
=

= Dn(p1, . . . , pn|q1, . . . , qn)−Dn−1(p1 + p2, . . . , pn|q1 + q2 + . . . , qn).

Therefore the relative entropy (Dα
n) is α–recursive, indeed. �

Obviously (Dα
n) is 3-semisymmetric, and for arbitrary γ ∈ R, (γDα

n) is
α–recursive and 3-semisymmetric, as well. Before dealing with the converse
we need two lemmas about logarithmic functions. A function � : R+ → R is
logarithmic if �(xy) = �(x) + �(y) for all x, y ∈ R+. If a logarithmic function �
is bounded above or below on a set of positive Lebesgue measure then �(x) =
= c ln(x) for all x ∈ R+ with some c ∈ R (see [11], Theorem 5 and Theorem
8 on pages 311, 312). The concept of real derivation will also be needed. The
function d : R→ R is a real derivation if it is additive, i.e. d(x+y) = d(x)+d(y)
for all x, y ∈ R, and satisfies the functional equation d(xy) = xd(y) + yd(x) for
all x, y ∈ R. It is somewhat surprising that there are non-identically zero real
derivations (see [11], Theorem 2 on page 352). If d is a real derivation then the

function x �→ d(x)
x , x ∈ R+ is logarithmic. Therefore it is easy to see that the
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real derivation is identically zero if it is bounded above or below on a set of
positive Lebesgue measure.

Lemma 2.2. Suppose that the logarithmic function � : R+ → R satisfies
the equality

(2.1) x�(x) + (1− x)�(1− x) = 0
(
x ∈]0, 1[

)
.

Then there exists a real derivation d : R→ R such that

(2.2) x�(x) = d(x) (x ∈ R+).

Proof. Let x, y ∈ R+. Then, by (2.1) and by using the properties of the
logarithmic function, we have that

0 =
x

x+ y
�

(
x

x+ y

)
+

y

x+ y
�

(
y

x+ y

)
=

=
x

x+ y

(
�(x)− �(x+ y)

)
+

y

x+ y

(
�(y)− �(x+ y)

)
=

=
1

x+ y

(
x�(x) + y�(y)− (x+ y)�(x+ y)

)
.

This shows that the function x �→ x�(x), x ∈ R+ is additive on R+. Hence,
by the well-known extension theorem (see e.g. [11], Theorem 1 on page 471),
there exists an additive function d : R → R such that (2.2) holds. Since � is
logarithmic, this implies that d(xy) = xd(y) + yd(x) holds for all x, y ∈ R+.
On the other hand, d is odd. Therefore this equation holds also for all x, y ∈ R,
that is, d is a real derivation. �

Lemma 2.3. Suppose that � : R+ → R is a logarithmic function and the
function g0 defined on the interval ]0, 1[ by

g0(x) = x�(x) + (1− x)�(1− x)

is bounded on a set of positive Lebesque measure. Then there exist a real number
β and a real derivation d : R→ R such that

(2.3) x�(x) + βx ln(x) = d(x) (x ∈ R+).

Proof. Define the function g on the interval [0, 1] by g(0) = g(1) = 0, and
for x ∈]0, 1[ by

g(x) =

⎧⎪⎨⎪⎩
−g0(x)

�(2)
, if �(2) �= 0

g0(x)− x log2(x)− (1− x) log2(1− x), if �(2) = 0.
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Then g is a symmetric information function (see [2], (3.5.33) Theorem on page
100) which, by our assumption, is bounded on a set of positive Lebesgue mea-
sure. Therefore, applying a theorem of Diderrich [5], we obtain that

g(x) = −x log2(x)− (1− x) log2(1− x)
(
x ∈]0, 1[

)
.

For a short proof of Diderrich’s theorem see also [13] in which an idea of Járai
[10] proved to be very efficient. Taking into consideration the definition of g
and applying Lemma 2.2, we get (2.3) with suitable β ∈ R. �

Now we are ready to prove our main result.

Theorem 2.4. Let α ∈ R, (In) be an α-recursive and 3-semisymmetric
relative information measure on the open domain, and

f(x, y) = I2(1− x, x|1− y, y)
(
x, y ∈]0, 1[

)
.

Furthermore, suppose that

(2.4) I2(p1, p2|p1, p2) = 0
(
(p1, p2) ∈ Γ2

)
.

If α /∈ {0, 1} then (In) = (γDα
n) for some γ ∈ R.

If α = 1 and there exists a point (u, v) ∈]0, 1[2 such that the function f(·, v)
is bounded on a set of positive Lebesgue measure and the function f(u, ·) is
bounded above or below on a set of positive Lebesgue measure then (In) = (γD1

n)
for some γ ∈ R.

And finally, if α = 0 and there exists a point (u, v) ∈]0, 1[2 such that the
function f(·, v) is bounded above or below on a set of positive Lebesgue measure
and the function f(u, ·) is bounded on a set of positive Lebesgue measure then
(In) = (γD0

n) for some γ ∈ R.

Proof. Applying Theorem 4.2.3. on page 87 of [6] withM(x, y) = xαy1−α,
x, y ∈ R+, and taking into consideration Lemma 1.2.12. on page 16 of [6], (see
also [1]), we have that

(2.5) In (p1, . . . , pn|q1, . . . , qn) = bpα1 q
1−α
1 + c

n∑
i=2

pαi q
1−α
i − b

in case α /∈ {0, 1},

(2.6) In (p1, . . . , pn|q1, . . . , qn) =
n∑

i=1

pi(�1(pi) + �2(qi)) + c(1− p1)
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in case α = 1, and

(2.7) In (p1, . . . , pn|q1, . . . , qn) =
n∑

i=1

qi(�1(pi) + �2(qi)) + c(1− q1)

in case α = 0 for all n ≥ 2, (p1, . . . , pn), (q1, . . . , qn) ∈ Γ◦
n with some b, c ∈ R

and logarithmic functions �1, �2 : R+ → R.

Now we utilize our further conditions on (In). In case α /∈ {0, 1}, (2.5) with
n = 2 and (2.4) imply that 0 = bp1 + cp2 − b for all (p1, p2) ∈ Γ2 whence b = c
follows. Thus, by (2.5), we obtain that (In) = (γDα

n) with γ = (α − 1)−1. In
case α = 1, (2.6) with n = 2 and (2.4) imply that

0 = p1�(p1) + p2�(p2) + c(1− p1)
(
(p1, p2) ∈ Γ2

)
,

where � = �1 + �2. Therefore c = 0, and, by Lemma 2.2 we get that x�2(x) =
= −x�1(x) + d1(x) for all x ∈ R+ and for some real derivation d1 : R → R.
Thus

f(x, y) = x�1

(
x

y

)
+ (1− x)�1

(
1− x

1− y

)
+

(
x

y
− 1− x

1− y

)
d1(y)

(
x, y ∈]0, 1[

)
.

Since the function f(·, v) is bounded on a set of positive Lebesque measure,
we get that the function x �→ x�1(x) + (1− x)�1(1− x), x ∈]0, 1[ has the same
property. Thus, by Lemma 2.3,

x�1(x) + βx ln(x) = d2(x) (x ∈ R+)

for some β ∈ R and derivation d2 : R→ R. Hence

f(x, y) = −βx ln
(
x

y

)
− β(1− x) ln

(
1− x

1− y

)
−
(
x

y
− 1− x

1− y

)
(d2(y)− d1(y))(

x, y ∈]0, 1[
)
.

f(u, ·) is bounded above or below on a set of positive Lebesgue measure for some
u ∈]0, 1[ thus the derivation d2 − d1 has the same property, so d2 − d1 = 0.
Therefore

f(x, y) = −βx ln
(
x

y

)
− β(1− x) ln

(
1− x

1− y

) (
x, y ∈]0, 1[

)
and the statement follows from Lemma 1.2 with a suitable γ ∈ R. The case
α = 0 can be handled similarly by interchanging the role of the distributions
(p1, . . . , pn) and (q1, . . . , qn) and of the logarithmic functions �1 and �2, respec-
tively. �
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3. Connections to known characterizations

In this section we discuss the connection between our characterization the-
orem and other statements known from the literature in this subject. Here
we deal especially with the results of Hobson [9] and Furuichi [7] which were
the main motivations of our paper. They considered the relative information
measures on closed domain thus the comparison is not obvious.

We begin with some definitions.

Definition 3.1. The relative information measure (In) on the closed do-
main is said to be expansible, if

In+1 (p1, . . . , pn, 0|q1, . . . , qn, 0) = In (p1, . . . , pn|q1, . . . , qn)

is satisfied for all n ≥ 2 and (p1, . . . , pn), (q1, . . . , qn) ∈ Γn, and it is called
decisive, if I2(1, 0|1, 0) = 0. Let α ∈ R be arbitrarily fixed. We say that
the relative information measure (In) satisfies the generalized additivity on the
closed (resp. open) domain if for all n,m ≥ 2 and for arbitrary

(p1,1, . . . , p1,m, . . . , pn,1, . . . , pn,m), (q1,1, . . . , q1,m, . . . , qn,1, . . . , qn,m) ∈
∈ Γnm (or Γ◦

nm)

Inm (p1,1, . . . , p1,m, . . . , pn,1, . . . , pn,m|q1,1, . . . , q1,m, . . . , qn,1, . . . , qn,m) =

= In(P1, . . . , Pn|Q1, . . . Qn) +

n∑
i=1

Pα
i Q

1−α
i Im

(
pi,1
Pi

, . . . ,
pi,m
Pi
|qi,1
Qi

, . . . ,
qi,m
Qi

)
is fulfilled, where Pi =

∑m
j=1 pi,j and Qi =

∑m
j=1 qi,j , i = 1, . . . , n.

A lengthy but simple calculation shows that the relative information mea-
sure (Dα

n) fulfills all of the above listed criteria. As well as Hobson [9] and
Furuichi [7], we would like to investigate the converse direction. More pre-
cisely, the question is whether the generalized additivity property determines
(Dα

n) up to a multiplicative constant. In general this is not true. Let us observe
that in case we consider the generalized additivity on the open domain Γ◦

n then
this property is insignificant for In if n is a prime. Nevertheless, on the closed
domain this property is well–treatable. In this case we can prove the following.

Lemma 3.2. If the relative information measure (In) on the closed domain
is expansible and satisfies the general additivity property with a certain α ∈ R,
then it is also decisive and α–recursive.
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Proof. Firstly, we will show that the generalized additivity and the ex-
pansibility imply that the relative information measure (In) is decisive. In-
deed, if we use the generalized additivity with the choice n = m = 2 and
(p1, p2, p3, p4) = (q1, q2, q3, q4) = (1, 0, 0, 0), then we get that

I4(1, 0, 0, 0|1, 0, 0, 0) = I2(1, 0|1, 0) + I2(1, 0|1, 0)

holds. On the other hand, (In) is expansible, therefore

I4(1, 0, 0, 0|1, 0, 0, 0) = I2(1, 0|1, 0).

Thus I2(1, 0|1, 0) = 0 follows, so (In) is decisive.

Now we will prove the α–recursivity of (In).
Let (r1, . . . , rn), (s1, . . . , sn) ∈ Γn and use the generalized additivity with the
following substitution

p1,1 = r1, p1,2 = r2, pi,1 = ri+1, i = 2, . . . , n− 1, pi,j = 0 otherwise

and

q1,1 = s1, q1,2 = s2, qi,1 = si+1, i = 2, . . . , n− 1, qi,j = 0 otherwise

to derive

Inm( r1, r2, 0, . . . , 0, r3, 0, . . . , 0, rn, 0, . . . , 0|s1, s2, 0, . . . , 0, s3, 0, . . . , 0, sn, 0, . . . , 0 ) =

= In(r1 + r2, r3, . . . , rn, 0|s1 + s2, s3, . . . , sn, 0)+

+(r1 + r2)
α(s1 + s2)

1−αI2

(
r1

r1 + r2
,

r2
r1 + r2

∣∣∣∣ s1
s1 + s2

,
s2

s1 + s2

)
+

+
n∑

j=3

rαj q
1−α
j Im(1, 0, . . . , 0|1, 0, . . . , 0).

After using that (In) is expansible and decisive, we obtain the α–recur-
sivity. �

In view of Theorem 2.4. and Lemma 3.2. the following characterization
theorem follows easily.

Theorem 3.3. Let α ∈ R, (In) be an expansible and 3-semisymmetric
relative information measure on the closed domain which also satisfies the
generalized additivity property on Γn with the parameter α and let f(x, y) =
= I2(1− x, x|1− y, y), x, y ∈]0, 1[. Additionally, suppose that

(3.1) I2(p1, p2|p1, p2) = 0.
(
(p1, p2) ∈ Γ2

)
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If α /∈ {0, 1} then (In) = (γDα
n) for some γ ∈ R.

If α = 1 and there exists a point (u, v) ∈]0, 1[2 such that the function f(·, v)
is bounded on a set of positive Lebesgue measure and the function f(u, ·) is
bounded above or below on a set of positive Lebesgue measure then (In) = (γD1

n)
for some γ ∈ R.

And finally, if α = 0 and there exists a point (u, v) ∈]0, 1[2 such that the
function f(·, v) is bounded above or below on a set of positive Lebesgue measure
and the function f(u, ·) is bounded on a set of positive Lebesgue measure then
(In) = (γD0

n) for some γ ∈ R.

Finally, we remark that the essence of Theorems 2.4. and 3.3. is that, in
case α /∈ {0, 1}, the algebraic properties listed in these theorems determine the
information measure (Dα

n) up to a multiplicative constant without any regu-
larity assumption. Furthermore, if α ∈ {0, 1}, then the mentioned algebraic
properties with a really mild regularity condition determine (Dα

n) up to a mul-
tiplicative constant.
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SOME REMARKS ON THE CARMICHAEL

AND ON THE EULER’S ϕ FUNCTION

I. Kátai (Budapest, Hungary)

Dedicated to my friend, Professor Antal Járai on his 60th anniversary

Abstract. Several theorems on the iterates of the Carmichael and on the
Euler’s ϕ function is presented, some of them without proof.

1. Introduction

We shall formulate several in my opinion new theorems on the divisors of
the Carmichael and Euler’s totient function.

Some of them can be proved by direct application of sieve theorems. We
omit the proof of them. We shall prove only Theorem 6, 10, 11, 12.

1.1. Notations. P = set of primes; p, π with and without suffixes always de-
note prime numbers; π(x) = #{p ≤ x}, π(x, k, l) = #{p ≤ x, p ≡ l (mod k)}.

λ(n) = Carmichael function defined for pα by

λ(pα) =

{
pα−1(p− 1), if p ≥ 3, or α ≤ 2,

2α−2, if p = 2 and α ≥ 3,

2000 AMS Mathematics Subject Classification: 11N56, 11N64.

Key words and phrases: Iterates of arithmetical functions, Euler’s ϕ function, Carmichael
function.

The Project is supported by the European Union and co-financed by the European Social
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and for n = pα1
1 . . . pαr

r (pi �= pj , pi ∈ P)

λ(n) = LCM [λ(pα1
1 ), . . . , λ(pαr

r )] .

Here LCM = least common multiple.

Let ω(n) = number of distinct prime factors of n, Ω(n) = number of prime
power divisors of n.

ϕ(n) =

r∏
j=1

p
αj−1
j (pj − 1) the Euler’s totient function.

P (n) = largest prime divisor of n; p(n) = smallest prime divisor of n.

Let x1 = log x, x2 = log x1 . . . .

Let λ(k)(n), ϕ(k)(n) be the kth iterate of λ(n) and of ϕ(n), respectively, i.e.
λ(0)(n) = n, ϕ(0)(n) = n, and λ(k+1)(n) = λ(λ(k)(n)), ϕ(k+1)(n) = ϕ(ϕ(k)(n)).

1.2. In this paper we shall formulate some theorems on λ, ϕ and on their
iterates. Some of these theorems can be proved by known methods which were
applied earlier, and we omit their complete proof.

1.3. Let q ≥ 2 be a fixed prime, γ(n) be that exponent, for which qγ(n) ‖ϕ(n).
M. Wijsmuller [3] investigated the completely additive function β defined on
p ∈ P by qβ(p) ‖ p+ 1, and proved a global central limit theorem for β(n). Her
method can be used to prove central limit theorem for γ(n) as well. In [1],
[2] we developed a method by which we can prove local central limit theorem
for γ(n) and β(n). We are unable to give the asymptotic of #{p ≤ x, p ∈
P, γ(p + 1) = k}, and that of {n ≤ x, γ(n2 + 1) = k}. Global central limit
theorem can be proved for γ(p+ 1), and γ(n2 + 1).

1.4. Let ν(n) be defined by qν(n) ‖λ(n). Let Pk := {p | p ∈ P, p ≡ 1
(mod qk)}; P∗

k = Pk\Pk+1. Let furthermore

(1.1) ωk(n) =
∑
p |n
p∈Pk

1,

(1.2) tk(x) :=
∏

p≡1 (mod qk)
p≤x

(
1− 1

p

)
.
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From the Siegel–Walfisz theorem (Lemma 7) one can obtain that

(1.3) log tk(x) = −
∑
p≤x

p≡1(qk)

1

p
+O

(
1

qk

)
= − x2

ϕ(qk)
+O

(
1

qk

)

valid if 1 ≤ qk ≤ c x2.

The following assertion can be proved by routine application of the asymp-
totic sieve.

Theorem 1. Let q ≥ 2 be a fixed prime,

(1.4) αk(x) :=
x2

ϕ(qk)
.

Assume that k = k(x)→∞ and that x2 · q−k →∞. Then

(1.5)

1(
1− 1

q

)
x
#{n ≤ x, (n, q) = 1, ν(n) = k, ωk(n) = r} =

= (1 + ox(1))tk(x)
∑ 1

ϕ(p1 · · · pr)

valid for 0 ≤ r ≤ x

x2
3

. The last sum is extended over those p1 < . . . < pr for

which pi ∈ P∗
k , p1 < . . . < pr ≤ x. In this range of r we have

(1.6)
∑ 1

ϕ(p1 · · · pr)
= (1 + ox(1))

(
x2

qk

)r

· 1
r!
.

Assume that qk/x2 →∞, qk < x1/3. Then

(1.7)
∑
n≤x

ωk(n) = x
∑
p≤x
p∈Pk

1

p
+O(π(x, qk, 1)),

and

(1.8)
∑
n≤x

ωk(n)(ωk(n)− 1) =
∑

p1 �=p2
p1p2≤x

p1,p2∈Pk

x

p1p2
+O

⎛⎜⎜⎝ ∑
p1<

√
x

p1∈Pk

π

(
x

p1
, qk, 1

)⎞⎟⎟⎠ .

By using the Brun–Titchmarsh theorem (Lemma 8), we obtain that the
error term on the right hand side of (1.8) is less than (lix)q−2kx2. From (1.7),
(1.8) we can deduce a Turán–Kubilius type inequality and from that
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Theorem 2. Let q ∈ P be fixed, k = k(x) be such that qk/x2 → ∞ and
that qk < cxA

1 hold with arbitrary constants c, A. Then

(1.9)
1

x
#{n ≤ x | ν(n) ≥ k} = (1 + ox(1))

∑
p≤x
p∈Pk

1

p
,

furthermore

(1.10)
∑
p≤x
p∈Pk

1

p
= αk(x) +O

(
1

qk

)
.

Remark. By using the Barban–Linnik–Tshudakov theorem (Lemma 9)
(1.9) remains valid up to qk < xδ, where δ is a suitable positive constant.

We can prove also the following Theorem 3, 4, 5.

Theorem 3. Assume that k = k(x) is such a sequence for which qk/x2 →
→∞ and that qk < cxA

1 with arbitrary constants c, A. Then

(1.11)
1

lix
#{p ≤ x | ν(p+ 1) ≥ k} = (1 + ox(1))αk(x).

Furthermore

(1.12)
1

lix
#{p ≤ x | ν(p+ 1) ≥ k, ν(p− 1) ≥ l} = (1 + ox(1))αk(x) · αl(x)

holds, if additionally ql/x2 →∞, ql < cxA
1 .

Remark. One could prove in general that

1

lix
#{p ≤ x | ν(p+ tj) ≥ kj , j = 1, . . . , h} = (1 + ox(1))αk1(x) . . . αkh

(x)

if t1, . . . , th are distinct nonzero integers and qkj/x2 → ∞, qkj ≤ cxA
1 (j =

= 1, . . . , h).

Theorem 4. Let q be an odd prime. Assume that k = k(x)→∞, x2q
−k →

→∞. Then

(1.13)

1

lix
#{p ≤ x, (p+ 1, q) = 1, ν(p+ 1) = k, ωk(p+ 1) = r} =

= (1 + ox(1))(lix)t
∗
k(x)

1

r!

(
xk
2

qk

)r
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if 0 ≤ r ≤ x2

x3
. Here

(1.14) t∗k(x) =
∏
p<x
p∈Pk

(
1− 1

p− 1

)
.

Remark. Since

log
t∗k(x)
tk(x)

= O

( ∑
p∈Pk

1

p2

)
= O

(
1

qk

)
,

(1.13) remains valid with tk(x) instead of t∗k(x).

Theorem 5. Let q be an odd prime, k = k(x) be such a sequence for which
x2q

−k →∞. Let ρ(m) be the number of residue classes n (mod m), for which
n2 + 1 ≡ 0 (mod m).

Let

(1.15) sk(x) =
∏
p<x
p∈Pk

(
1− ρ(p)

p− 1

)
.

Then

(1.16)

1

x
#
{
n ≤ x, (n2 + 1, q) = 1, ν(n2 + 1) = k, ωk(n

2 + 1) = r
}
=

= (1 + ox(1))

(
1− ρ(q)

q

)
sk(x)

1

r!

⎛⎜⎝ ∑
π<x
π∈Pk

ρ(π)

π − 1

⎞⎟⎠
r

if 0 ≤ r ≤ x2

x3
.

1.5. In their paper [6] W.D. Banks, F. Luca, I.E. Shparlinski investigated some

arithmetic properties of ϕ(n), λ(n), and that of ξ(n) =
ϕ(n)

λ(n)
. Among others

they investigated the distribution of P (ξ(n)). Namely they proved that

(1.17) 1 + o(1) ≤ 1

x · x3

∑
n≤x

logP (ξ(n)) ≤ 2 + o(1),

and that

(1.18) (0 <)c1 ≤
1

xx3
2

∑
n≤x

P (ξ(n)) ≤ c2 (x ≥ 1)

holds with suitable positive constants.
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We can prove that P (ξ(n)) is distributed in limit according to the Poisson
law.

Let
κq(n) :=

∑
p |n

p≡1 (mod q2)

1; fY (n) :=
∑
q>Y

κq(n).

Since ∑
n≤x

κq(n) =
∑

p≡1 (mod q2)

[
x

p

]
≤ x

∑
p≤x

p≡1 (mod q2)

1

p
≤ cxx2

q2

holds with a suitable constant c, and∑
q≥Y

1

q2
=

1

Y log Y
+O

(
1

Y (log Y )2

)
,

we obtain that ∑
n≤x

fY (n) ≤
c x x2

Y log Y
.

If q is an odd prime, q2 | λ(n), then either q3 | n, or there exists some p | n
for which q2 | p− 1. We obtain

(1.19) #
{
n ≤ x | q2 | λ(n) for some q > x2

2

}
≤ c x

x2x3
.

Let
f∗
Y (n) =

∑
Y≤q≤x2

2

κq(n),

∑
1
:=

∑
n≤x

f∗
Y (n),

∑
2
:=

∑
n≤x

f∗2
Y (n).

From the Siegel–Walfisz theorem one can prove that∑
p≤x

p≡1 (mod k)

1

p
=

1

ϕ(k)
x2 +O

(
x3

ϕ(k)

)
if 1 ≤ k ≤ xA

2 ,

where A is an arbitrary constant, whence we deduce that∑
1
= xx2 AY,x +O

(
xx3

Y log Y

)
,

AY,x :=
∑

Y≤q≤x2
2

1

ϕ(q2)
=

1

Y log Y
+O

(
1

Y (log Y )2

)
.
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Furthermore
∑

2
=
∑

2,1
+
∑

2,2
, where∑

2,1
=

∑
Y≤q≤x2

2

∑
n≤x

κ2
q(n),

∑
2,2

=
∑
q1 �=q2

Y≤q1,q2≤x2
2

∑
n≤x

κq1(n)κq2(n).

In this section q, q1, q2 run over the set of primes.

We have∑
2,1

=
∑

1
+

∑
Y≤q≤x2

2

∑
p1 �=p2

q2/pj−1

[
x

p1p2

]
=
∑

1
+x

∑
Y≤q≤x2

2

x2
2

ϕ(q2)2
+

+O

⎛⎝xx2x3

∑
q>Y

1/q4

⎞⎠ =
∑

1
+O

(
xx2

2

Y 3 log Y

)

and∑
2,2

= x
∑
q1 �=q2

qj∈[Y,x2
2]

∑
pj≡1 (mod q2j )

p1p2≤x

1

p1p2
+ x

∑
q1 �=q2

qj∈[Y,x2
2]

∑
p≤x

p≡1 (mod q21q
2
2)

1

p
+O(x)

whence we obtain that

∑
2,2

=

(
1 +O

(
x3

x2

))
xx2

2A
2
y,x +O

⎛⎜⎝xx2

⎛⎝∑
q>Y

1

q2

⎞⎠2
⎞⎟⎠ =

= xx2
2A

2
y,x +O

(
xx3x2 ·

1

Y 2 log2 Y

)
.

After some easy computation we obtain that

(1.20)
1

x

∑
n≤x

(f∗
Y (n)− x2AY,x)

2 � x2

Y log Y
+

x2x3

(Y log Y )2
+

x2
2

Y 3 log Y
.

From (1.20) we can deduce

Theorem 6. Let εx → 0. Then

x−1#

{
n ≤ x | P (λ(n)) ∈

[
εx ·

x2

x3
,
1

εx
· x2

x3

]}
→ 1 (x→∞).

Proof. Indeed, choose first Y = εx ·
x2

x3
, then Y =

1

εx
· x2

x3
and apply

(1.20). �
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We can prove also

Theorem 7. Let εx → 0. Then

1

lix
#

{
p ≤ x

∣∣∣∣∣ P (λ(p− 1)) ∈
[
εx ·

x2

x3
,
1

εx
· x2

x3

]}
→ 1 (x→∞).

1.6. Assume that Y = O(x2
2), Y ≥ x

3/2
2 , u(n) := eiτf

∗
Y (n), where τ ∈ R. Then

u is a strongly multiplicative function, for p ∈ P

u(p) :=

{
eiτ if p ≡ 1 (mod q2) for some q ∈ [Y, x2

2],

1 otherwise.

Let h be the Moebius transform of u, i.e.

h(p) =

{
eiτ − 1 if q2 | p− 1 for some q ∈ [Y, x2

2],

0 otherwise,

h(pα) = 0 if p ∈ P, α ≥ 2.

Let
S1(x, τ) :=

∑
n≤x

eiτf
∗
Y (n); S2(x, τ) =

∑
n≤x

u(n).

If f∗
Y (n) �= u(n) for some n, then there exists a prime divisor p of n, and

q1, q2 ∈ P, q1, q2 > Y , q1 �= q2 such that p ≡ 1(mod q21q
2
2).

Then

|S1(x, τ)− S2(x, τ)| ≤ x
∑

q1,q2∈[Y,x2
2]

q1 �=q2

∑
p≡1 (mod q21 ,q

2
2)

p≤x

1

p
�

� xx2

⎛⎝∑
q>Y

1

q2

⎞⎠2

� xx2

(
1

Y log Y

)2

= O

(
x

x2
2

)
.

There are several ways to prove that

(1.21)

S2(x, τ)

x
= (1 + ox(1))

∏
p<x

p≡1 (q2)
q>Y
q∈P

(
1 +

eiτ − 1

p

)
=

= (1 + ox(1)) exp

((
eiτ − 1

) x2

Y log Y

)
.
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One way to prove (1.21) is to copy the argument of the theorem of H. De-
lange
for the arithmetical mean of multiplicative functions of moduli 1. (See [7], or [4]

pp. 331–336.) Another method is to compute the asymptotic of
∑

n≤x
f∗h
Y (n)

for h = 1, 2, . . . and use the Frechlet–Shohat theorem (see J. Galambos [11]).
A relevant paper is written by J. Šiaulys [8]. We can prove

Theorem 8. Let αY = x2

∑
q>Y

1

ϕ(q2)
. Assume that αY ∈ [c1, c2], where

c1 < c2 are arbitrary positive constants. Then

(1.22) lim
x→∞ sup

αY ∈[c1,c2]

sup
k≥0

∣∣∣∣ 1x# {n ≤ x | f∗
Y (n) = k} − αk

Y

k!
exp(−αY )

∣∣∣∣ = 0.

Similarly, we have
(1.23)

lim
x→∞ sup

αY ∈[c1,c2]

sup
k≥0

∣∣∣∣ 1

lix
# {p ≤ x | f∗

Y (p− 1) = k} − αk
Y

k!
exp(−αY )

∣∣∣∣ = 0.

Assume that Q is such a prime for which (Q logQ)/x2 ∈ [c1, c2], where c1, c2
are positive constants. We would like to estimate the number of those integers
n ≤ x for which P (ξ(n)) = Q. By using the asymptotic sieve one can obtain
quite immediately that

1

x
#{n ≤ x | P (ξ(n)) < Q} = (1 + ox(1))

∏
p≤x

q2/p−1
q≥Q

(
1− 1

p

)
.

Let

τ(Q, x) = x2 ·
∑
q≥Q

1

ϕ(q2)
.

Then
1

x
#{n ≤ x | P (ξ(n)) < Q} = (1 + ox(1)) exp(−τ(Q, x)).

Let BQ,r be the set of those n for which P (ξ(n)) = Q, and there exists
exactly r distinct prime divisors p1, p2, . . . , pr of n for which Q2 | pj − 1. Then

1

x
#{n ≤ x | n ∈ BQ,r} = (1 + ox(1)) exp(−τ(Q, x)) · 1

r!

{ ∑
p≡1(Q2)

p≤x

1

p

}r

valid for every fixed r = 0, 1, 2, . . . .
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We can prove furthermore

Theorem 9. We have

1

lix
#{p ≤ x | p−1 ∈ BQ,r} = (1+ox(1)) exp(−τ(Q, x)) · 1

r!

{ ∑
p≡1(modQ2)

p≤x

1/p

}r

for every fixed r = 0, 1, 2, . . . .

1.7. For p1, p2, q ∈ P let

(1.24) fq(p1, p2) =

{
1 if p1 ≡ p2 ≡ 1 (mod q), p1 < p2,

0 otherwise.

Let

(1.25) ΔY (n) :=
∑
q>Y

∑
p1p2|n

f1(p1, p2).

We observe that ΔY (n) �= 0 implies that q2 | ϕ(n) for some q > Y . On
the other hand, if q2 | ϕ(n), then either q3 | n; or q2 | n and p | n with some
p ≡ 1 (mod q), or p | n with some p ≡ 1 (mod q2); or there exist p1 �= p2,
p1 ≡ p2 ≡ 1 (mod q), q > Y , and p1p2 | n.

Thus
(1.26)
1

x
#{n ≤ x | ΔY (n) �= 0} − 1

x
#{n ≤ x | q2|ϕ(n) for some q > Y } � x

Y log Y
.

By using our method developed by De Koninck and myself [1], [2] we can

compute the asymptotic of
∑
n≤x

Δh
Y (n) and from the Frechet–Shohat theorem

deduce

Theorem 10. Let 0 < c1 < c2 < ∞ be fixed constants, α = αx ∈ [c1, c2],

Y = Yx =
1

2α
· x2

2/2x3. Then

(1.27) x−1#{n ≤ x | ΔYx(n) = k} = (1 + ox(1))
αk

k!
e−α (x→∞)

for every fixed k = 0, 1, 2, . . . uniformly as αx ∈ [c1, c2].

Furthermore we obtain that

(1.28)
1

lix
#{p ≤ x | ΔYx(p− 1) = k} = (1 + ox(1))

αk

k!
e−α (x→∞)

for every fixed k = 0, 1, . . . uniformly as αx ∈ [c1, c2].
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We shall prove this theorem in Section 3.

The following theorem can be deduced easily from Theorem 10.

Let κY (n) be the number of those q > Y for which q2 | ϕ(n).

Theorem 11. Let Yx be the same as in Theorem 10.

Then

(1.29) x−1#{n ≤ x | κYx
(n) = k} = (1 + ox(1))

αk

k!
e−α (x→∞),

and

(1.30)
1

lix
#{p ≤ x | κYx

(p− 1) = k} = (1 + ox(n))
αk

k!
e−α (x→∞).

Remark. By using our method we can determine the distribution of

δ
(k,r)
Y (n) = δY (n) = #{q > Y, q ∈ P, qr | ϕk(n)}

and that of δ
(k,r)
Y (p − 1), where Yx = α (xkr

2 /x3)
1/(r−1). We shall prove it in

another paper.

1.8. In a paper of F. Luca and C. Pomerance [17] the conjecture of Erdős,
namely that ϕ(n − ϕ(n)) < ϕ(n) holds on a set of asymptotic density 1 is
proved.

They deduce that

(1.31)

∣∣∣∣ϕ(n− ϕ(n))

n− ϕ(n)
− ϕ(n)

n

∣∣∣∣ < εn

holds for almost all n, with a sequence εn → 0, which implies the conjecture

of Erdős. Namely they prove (1.31) with εn = 2
log log log n

log log n
but this is not

necessary for obtaining Erdős conjecture.

By their method one can prove that

(1.32)

∣∣∣∣fi(n± fj(n))

n± fj(n)
− fi(n)

n

∣∣∣∣ < εn

holds on a set of asymptotic density 1, where εn → 0, and f1(n), f2(n) can take
the values ϕ(n), σ(n) : (f1, f2) = (ϕ,ϕ); (ϕ, σ), (σ, ϕ), (σ, σ).
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We can prove (1.32) also, if n runs over the set of shifted primes. We shall
give a complete proof only in the case f1 = f2 = ϕ, ± = −, and over the set
of prime +1′s.

Theorem 12. There exists a suitable sequence εp → 0 (p ∈ P, p → ∞)
such that ∣∣∣∣ϕ(p− 1− ϕ(p− 1))

p− 1− ϕ(p− 1)
− ϕ(p− 1)

p− 1

∣∣∣∣ < εp

holds for p ∈ P with the possible exception of ox(1)π(x) of p ∈ P up to x.

1.9. J.-M. De Koninck and F. Luca [17] investigated

H(n) :=
σ(ϕ(n))

ϕ(σ(n))
.

In particular, they obtain the maximal and minimal orders of H(n), its average
order, and also proved some density theorems.

Since

H(n) =
σ(ϕ(n))

ϕ(n)
· σ(n)

ϕ(σ(n))
· ϕ(n)
σ(n)

,

therefore
logH(n) = κ1(n) + κ2(n) + κ3(n),

where

κ1(n) =
∑

pα ‖ϕ(n)

log

(
1 +

1

p
+ · · ·+ 1

pα

)
,

κ2(n) =
∑

p|σ(n)
log

1

1− 1
p

,

κ3(n) =
∑
pα ‖n

log
1− 1

p

1 + 1
p + · · ·+ 1

pα

.

By using a known theorem of P. Erdős one can prove that∣∣∣∣∣∣κj(n)−
∑

p<x2/x2
3

log
1

1− 1
p

∣∣∣∣∣∣ < εx (j = 1, 2)

holds for all but at most o(x) integers n ≤ x, where εx → 0 (x → ∞). Since
κ3(n) is an additive function satisfying the conditions of the Erdős–Wintner
theorem, we obtain immediately that

1

x
#
{
n ≤ x

∣∣∣ logH(n)−
∑

p<x2/x2
3

log
1

1− 1
p

< y
}
= Fx(y)
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tends to F (y), where F is the distribution function defined as

F (y) = lim
x→∞

1

x
#{n ≤ x | κ3(n) < y}.

Erdős proved that F is a continuous singular function.

Distribution of H on the set of shifted primes, on polynomial values, and
on prime places of polynomial values can be proved similarly. Let

s(x) =
∏
p<x

(
1− 1

p

)−1

.

Then s(x) = eγx1 (1 + ox(1)).

Theorem 13. Let k, l ≥ 0, f
(1)
k,l (n) := σk(ϕl(n)), f

(2)
k,l (n) = ϕk(σl(n)).

Then for every n ≤ x dropping at most o(x) integers

(1.33)
σk(n)

σk−1(n)
= s(xk−1

2 )(1 + ox(1)) (k ≥ 2),

(1.34)
ϕk(n)

ϕk−1(n)
=

1

s(xk−1
2 )

(1 + ox(1)) (k ≥ 2),

and for k, l ≥ 1

(1.35)
f
(1)
k,l (n)

f
(1)
k−1,l(n)

=
1

s(xk+l−1
2 )

(1 + ox(1)) (k ≥ 1),

(1.36)
f
(2)
k,l (n)

f
(2)
k−1,l(n)

= s(xk+l−1
2 )(1 + ox(1)) (k ≥ 1).

Furthermore the relations (1.33), (1.34), (1.35), (1.36) are valid on the set of
shifted primes p+a (a �= 0), with the exception of no more than o(lix) integers
p+ a up to x.

This theorem is an immediate consequence of the following

Theorem 14. Let k, l ≥ 1. Then, with the exception of at most δxx integers
n ≤ x, for the others

α) pα | ϕk(n), pα | σk(n) if p
α ≤ xk−εx

2 , and∑
p|ϕk(n)

p>xk+εx
2

1

p
< εx;

∑
p|ϕk(n)

p>xk+εx
2

1

p
< εx,
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β) pα | f (1)
k+l(n), pα | f (2)

k+l(n) if p
α ≤ xk+l−εx

2 ,

and

∑
p|f(1)

k+l(n)

p>xk+l+εx
x

1

p
< εx;

∑
p|f(2)

k+l(n)

p>xk+l+εx
2

1

p
< εx,

where εx → 0. Here δx → 0.

The same assertions hold if n runs over the set of shifted primes, i.e. drop-
ping no more than δxlix integers p + a ≤ x (a fix, a �= 0), for the other p + a
the relations α), β) hold true.

Remark. Theorem 14. α) for k = 1 is due to Erdős [11], for arbitrary
k is given in [12]. The proof of β), can be proved similarly. One can use the
method using in the papers [13], [15], [16].

From Theorem 13, 14 and from Erdős–Wintner theorem (see in [5]) we can
deduce several generalizations of the theorem of De Koninck and Luca [16].

Examples.

1. The function

νk(n) =
ϕk(n)

n
· (k − 1)!(log log log n)k−1 · e(k−1)γ

has a limit distribution, which is the same as the limit distribution of
ϕ(n)

n
.

2. The function

μk(n) =
σk(n)

n

(log log log n)−(k−1)

(k − 1)!
e−(k−1)γ

is distributed in limit as
σ(n)

n
.

3. The function

νk(p+ a) is distributed in limit as
ϕ(p+ a)

p+ a
;

μk(p+ a) is distributed in limit as
σ(p+ a)

p+ a
.

Here a �= 0, p runs over the set of primes.
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4. The function

ρ
(1)
k,l (n) :=

f
(1)
k,l (n)

n
(log log log n)l−1−k (l − 1)!

l(l + 1) . . . (l + k − 1)
el−1−kγ

is distributed in limit as
ϕ(n)

n
;

the function

ρ
(2)
k,l (n) =

f
(2)
k,l (n)

n
· l(l + 1) . . . (l + k − 1)

(l − 1)!
e(k−l+1)γ · (log log log n)k−l+1

is distributed in limit as
σ(n)

n
.

5. Let a �= 0, fixed integer. The functions

ρ
(1)
k,l (p+ a); ρ

(2)
k,l (p+ a)

are distributed in limit as
ϕ(p+ a)

p+ a
,
σ(p+ a)

p+ a
respectively. Here p runs over

the set of primes

2. Lemmata

We shall use Selberg’s sieve theorem as it is formulated in Elliott ([4], Chap-
ter 2, Lemma 2.1).

Lemma 1. Let an (n = 1, . . . , N) be integers, f(n) ≥ 0. Let r > 0, and
p1 < p2 < . . . < ps ≤ r be rational primes. Set Q = p1 . . . ps. If d | Q then let

N∑
n=1

an≡0 (mod d)

f(n) = η(d)X +R(N, d),

where X,R are real numbers, X ≥ 0, and η(d1d2) = η(d1) · η(d2) whenever d1
and d2 are coprime divisors of Q.
Assume that for each prime p, 0 ≤ η(p) < 1. Let

I(N,Q) :=

N∑
n=1

(an,Q)=1

f(n).
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Then the estimate

I(N,Q) = {1 + 2Θ1H} ×
∏
p|Q

(1− η(p)) + 2Θ2

∑
d|Q
d≤z3

3ω(d)|R(N, d)|

holds uniformly for r ≥ 2, max(log r, S) ≤ 1

8
log z, where |Θ1| ≤ 1, |Θ2| ≤ 1

and

H = exp

(
− log z

log r

{
log

(
log z

S

)
− log log

(
log z

S

)
− 2S

log z

})
,

S =
∑
p|Q

η(p)

1− η(p)
log p.

The next lemma can be found in Halberstam and Richert [5], Corollary
2.4.1.

Lemma 2. Let k be a positive integer, l, a, b be nonzero integers, k ≤ x.
Then

#{p ≤ x | p ≡ l (mod k), ap+ b ∈ P, p ∈ P} ≤

≤ c
∏
p|kab

(
1− 1

p

)−1

· x

ϕ(k) log2 x
k

,

where c is an absolute constant.

Lemma 3 (E. Bombieri and A.I. Vinogradov). For fixed A > 0, there exists
B = B(A) > 0 such that∑

k≤
√

x

xB
1

max
(l,k)=1

max
2≤y≤x

∣∣∣∣π(y, k, l)− li y

ϕ(k)

∣∣∣∣� x

xA
1

.

For a proof see [4].

Lemma 4. Let f be a multiplicative non-negative function which for suit-
able A and B satisfies

(i)
∑
p≤y

f(p) log p ≤ Ay (y ≥ 0),

(ii) sup
p

∑
ν≥2

f(pν)

pν
log pν ≤ B.
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Then, for x > 1, ∑
n≤x

f(n) ≤ (A+B + 1)
x

x1

∑
n≤x

f(n)

n
.

This assertion is Theorem 5 in Tenenbaum [4], Part III. Chapter 5.

Lemma 5. We have for l = 1, 2, 1 ≤ k ≤ x∑
p≤x

p≡l(mod k)

1

p
≤ c

x2

ϕ(k)
.

(See [5].)

Lemma 6 (Frechet and Shohat [9]). Let Fn(u) (n = 1, 2, . . . ) be a sequence
of distribution functions. For each non-negative integer l let

lim
n→∞

∞∫
−∞

ul dFn(u)

exist. Then there exists a subsequence Fnk
(u), n1 < n2 < . . . which converges

weakly to the limiting distribution F (u) satisfying

αl =

∞∫
−∞

ul dF (u), (l = 0, 1, . . .).

Moreover, if the sequence of moments αl determines F (u) uniquely, then the
sequence Fn(u) converges to F (u) weakly.

Lemma 7 (Siegel and Walfisz). We have

π(x, k, l) =
lix

ϕ(k)

(
1 +O

(
e−c

√
x1

))
uniformly as (k, l) = 1, 1 ≤ k ≤ xA

1 . A is an arbitrary constant.

(See in [4].)

Lemma 8 (Brun–Titchmarsh). We have

π(x, k, l) ≤ cx

ϕ(k) log x/k
,

if 1 ≤ k < x, (k, l) = 1. c is an absolute constant.

(See in [18].)
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Lemma 9 (Barban, Linnik and Tshudakov [10]). Let q be an odd prime.
Then

π(x, qr, l) =
lix

ϕ(qr)

(
1 +O

(
e−c

√
x1

))
uniformly as (l, q) = 1, qr ≤ x1/3.

3. Proof of Theorem 10 and Theorem 11

First we prove the relation (1.27). Let

(3.1) δq(n) =
∑

p1p2|n
fq(p1, p2),

(3.2) Δ∗
Y (n) =

∑
Y <q≤x2

2

∑
p1p2|n

fq(p1, p2).

We observe that

(3.3)

#{n ≤ x | Δ2
x2
(n) �= 0} ≤

∑
n≤x

Δx2
2
(n) ≤

≤
∑
q≥x2

2

∑
p1p2≤x
pj≡1(q)

[
x

p1p2

]
≤ cxx2

2

∑
q≥x2

2

1

q2
= O

(
x

x3

)
.

Let r ≥ 1, and

(3.4) τr(n) = Δ∗
Yx
(n)

(
Δ∗

Yx
(n)− 1) . . . (Δ∗

Yx
(n)− (r − 1)

)
.

If z1, z2, . . . , zM ∈ {0, 1}, then

(3.5)
∑

i1<i2<...<ir

zi1zi2 . . . zir =
T (T − 1) . . . (T − (r − 1))

r!
,

(3.6) T = z1 + z2 + . . .+ zm.

The relation (3.5) can be proved by using induction on r.
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We can write

(3.7) τr(n) =
∑

πj ,π
′
j ,qj

πjπ
′
j |n

r∏
j=1

fqj (πj , π
′
j),

where πj , π
′
j , qj ∈ P, qj ∈ [Yx, x

2
2].

Let τr(n) = τ
(1)
r (n)+τ

(2)
r (n), where in τ

(1)
r (n) we sum over those πj , π

′
j (j =

= 1, . . . , r) for which {πu, π
′
u} ∩ {πv, π

′
v} = ∅ if u �= v, and in τ

(2)
r (n) we sum

over the others.

We have∑
2
:=

∑
n≤x

τ (2)r (n) ≤
∑∗

qj ,πj ,π′
j

[
x

LCM(π1, π′
1, . . . , πr, π′

r)

]

where ∗ indicates that no more than (2r − 1) distinct primes occur among
π1, π

′
1, . . . , πr, π

′
r.

By using Lemma 3 we obtain that

1

x

∑
2
� x2r−1

2

⎧⎨⎩∑
q>Yx

1

q2

⎫⎬⎭
r

� x2r−1
2 · 1

(Yx log Yx)r
= ox(1).

Let ∑
1
:=

∑
n≤x

τ (1)r (n).

Then

(3.8)
∑

1
=

∑
πj ,π

′
j ,qj

πj<π′
j

[
x

π1π′
1 · · ·πrπ′

r

]
,

where in the right hand side π1, π
′
1 . . . , πr, π

′
r are distinct primes qj |πj − 1,

qj |π′
j − 1 and qj ∈ [Yx, x

2
2].

By using our method in [1] one can obtain that

(3.9)
1

x

∑
1
= (1 + ox(1))

1

2r

∑
p1p2···p2r≤x

1

p1p2 · · · p2r

⎧⎨⎩ ∑
Yx≤q≤x2

2

1

(q − 1)2

⎫⎬⎭
r

.

Since ∑
Yx≤q≤x2

2

1

(q − 1)2
= (1 + ox(1))

1

Yx log Yx
= (1 + ox(1))

2α

x2
2

,
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and ∑
p1···p2r≤x

1

p1 · · · p2r
= (1 + ox(1))x

2r
2 ,

we obtain that

(3.10)
1

x

∑
1
= (1 + ox(1))α

r,

and so
1

x

∑
n≤x

τr(n) = (1 + ox(1))α
r (x→∞)

uniformly as α = αx ∈ [c1, c2], 0 < c1 < c2 <∞.

By the Frechet–Shohat theorem and that
αr

r!
are the factorial moments

of the Poisson-distribution, furthermore taking into consideration (1.26), we
obtain (1.27).

The proof of (1.28) is similar, somewhat more complicated.

Let r ≥ 1 be fixed. Count those primes p ≤ x for which there exists such
a couple of primes π < π′ for which ππ′ | p − 1 and π ≡ 1 (mod q), π′ ≡ 1
(mod q), q > Yx, furthermore π′ > x1/4r. We shall apply Lemma 2. We write
p− 1 as aππ′. Let a, π, q be fixed, π ≡ 1 (mod q). Since π′ > x1/4r, therefore
aπ < x1−1/4r. We have

#{p ≤ x | p− 1 = aππ′; p, π′ ∈ P, p′ ≡ 1 (mod q)} ≤ c
x

aπq log2 x
aπq

.

Let us sum over q < x1/8r, a, π ≡ 1 (mod q). Since aπq ≤ x1−1/8r, therefore
this sum is

≤
∑
q≥Yx

c(lix)x2

q2
= ox(1)lix.

The contribution of those π, π′ for which q ≥ x1/8r is

≤
∑

q≥x1/8r

∑
ππ′≤x

[ x

ππ′
]
≤ xx2

2

∑
q≥x1/8r

1

q2
= o(lix).

Let
Δ̃Y (n) =

∑
Y <q

∑
p1p2|n

p1<p2<x1/4r

fq(p1, p2).

By using the Brun–Titchmarsh inequality (Lemma 8), we obtain that

1

lix
#{p ≤ x | Δ̃x2

2
(p− 1) �= 0} = o(lix).
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Let Δ̃∗
Y (n) = Δ̃Y (n)− Δ̃x2

2
(n), and

(3.11) τ̃r(n) = Δ̃∗
Y (n)(Δ̃

∗
Y (n)− 1) · · · (Δ̃∗

Y (n)− (r − 1)).

Let τ̃r(n) = τ̃
(1)
r (n) + τ̃

(2)
r (n). Arguing as earlier, we deduce that∑
p≤x

τ (2)r (p− 1) = o(lix),

and that ∑
p≤x

τ (1)r (p− 1) =
∑

πj ,π
′
j ,qj

πj<π′
j<x1/8r

π(x, π1π
′
1 . . . πrπ

′
r, 1).

By using the Bombieri–Vinogradov theorem (Lemma 3) we can continue
the proof as we did in the proof of (1.27).

Now we prove Theorem 11.

It is clear that ΔYx(n) ≥ κYx(n). It is enough to prove that

(3.12) x−1#{n ≤ x | κYx(n) �= ΔYx(n)} → 0 (x→∞),

and that

(3.13)
1

lix
#{p ≤ x | κYx

(p− 1) �= ΔYx
(p− 1)} → 0 (x→∞).

If κYx
(n) �= ΔYx

(n), then there exists q > Yx and π1 < π2 < π3, πj ∈ P ,
q | πj − 1 (j = 1, 2, 3) such that π1π2π3 | n. Thus (3.12) is less than

∑
q>Y

∑
π1π2π3

q|πj−1

x

π1π2π3
� x · x3

2

∑
q>Yx

1

q3
� xx3

2

Y 2
x log Yx

= o(x).

(3.14) can be proved similarly. We have to overestimate the size of those p ≤ x
for which there exists q > Yx and primes π1 < π2 < π3 such that π1π2π3 | p−1,
and q | πj − 1 (j = 1, 2, 3).

We can drop the contribution of those primes p ≤ x for which q > x2
2,

say. Now we may assume that q ≤ x2
2. By using the Brun–Titchmarsh

inequality, we can drop also the contribution of those primes p for which
π1π2π3 < x1−δ, where δ is a fixed positive constant. It remains the case when
p− 1 = aπ1π2π3, π1π2π3 ≥ x1−δ, πj ≡ 1 (mod q), πj ∈ [Yx, x

2
2]. From Lemma

5 we obtain that the number of these primes is o(lix).
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4. Proof of Theorem 12

Let e(n) =
ϕ(n)

n
, log

1

e(n)
= t(n) =

∑
q|n

log
1

1− 1
q

.

Let δx → 0 slowly, t(n) = t1(n) + t2(n) + t3(n) + t4(n) where

t1(n) =
∑
q|n

q<x1−δx
2

t(q); t2(n) =
∑

x1−δx
2 <q<x1+δx

2

q|n

t(q),

t3(n) =
∑
q|n

x1+δ
2 <q<x1

t(q); t4(n) =
∑
q>x1

q|n

t(q).

It is clear that max
n≤x

t2(n) = ox(1), max
n≤x

t4(n) = ox(1).

By using sieve theorems one can prove that for all but o(lix) of primes
p ≤ x, q | ϕ(p − 1) holds for all q < x1−δx

2 , if δx → 0 sufficiently slowly. This
implies that t1(p−1) = t1(p−1−ϕ(p−1)) for all but o(π(x)) of primes p ≤ x.

Since

(4.1)
∑
p≤x

t3(p− 1)�
∑

x1≥q>x1+δx
2

(1/q) π(x, q, 1)� lix ·
∑

q>x1+δx
2

1/q2 = o(lix)

we obtain that t3(p− 1) = ox(1) holds for all but o(π(x)) primes p ≤ x.

Now we shall prove that t3(p−1−ϕ(p−1)) = ox(1) holds for all but o(π(x))
of primes p ≤ x.

Let us write each p− 1 as Qm, where Q is the largest prime factor of p− 1.
The size of those p ≤ x for which P (p−1) < xδx , or P (p−1) > x1−δx is o(lix).
This is wellknown, easy consequence of sieve theorems. We shall drop all these
primes. Starting from (4.1) it is enough to prove that∑

p≤x

P (p−1)∈[xδx ,x1−δx ]

t∗3(p− 1− ϕ(p− 1)) = o(lix),

where
t∗3(p− 1− ϕ(p− 1)) =

∑
p−1−ϕ(p−1)≡0(q)

q�p−1

1/q.
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Let Q ∈ P, SQ = {p ≤ x, p − 1 = Qm, P (p − 1) = Q}. Observe that if
p− 1 = Qm, q | p− 1− ϕ(p− 1), then Q(m− ϕ(m)) + ϕ(m) ≡ 0 (mod q). If
q | m − ϕ(m), then the above equation has a solution Q only if q | ϕ(m), and
so if q | m. Such kind of q’s are excluded in t∗3.

Hence∑
: =

∑
P (p−1)∈[xδx ,x1−δx ]

t∗3(p− 1− ϕ(p− 1))�

�
∑

x1≥q>x1+δx
1

1

q

∑
m≤x1−δx

q�m

#{Q ∈ P, Qm ≤

≤ x,Q(m− ϕ(m)) + ϕ(m) ≡ O(q)} �

�
∑

x1+δx
2 ≤q<x1

1

q

∑
m≤x1−δx

2

q�m

#{p,Q ∈ P, p = Qm+ 1, Q(m− ϕ(m))+

+ ϕ(m) ≡ 0 (mod q)}.

Let us apply Lemma 1 with substituting in it x→ x

n
, p→ Q, k → q. We have

∑
�

∑
x1+δx
2 <q<x1

1

q2

∑
m<x1−δx

x

m log2 x
mq

.

The right hand side is clearly o(lix).

We are almost ready. Let ej(n) := etj(n). Then e(n) = e1(n)e2(n)e3(n)e4(n).
We have to consider

up−1 := e(p− 1− ϕ(p− 1))− e(p− 1).

We proved that ej(p− 1−ϕ(p− 1)) = 1+ ox(1), ej(p− 1) = 1+ ox(1) hold
for all but o(lix) primes p ≤ x, for j = 2, 3, 4, and claimed that e1(p − 1) =
= e1(p− 1− ϕ(p− 1)) is satisfied for all but o(lix) primes p ≤ x.

The proof of the theorem is completed. �
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FUNCTIONAL EQUATIONS RELATED

TO HOMOGRAPHIC FUNCTIONS

Janusz Matkowski (Zielona Góra, Poland)

Dedicated to the sixtieth birthday of Professor Antal Járai

Abstract. A functional equation in two variables related to homographic
functions is introduced. The solutions are established with the aid of some
results on functional equations in a single variable. A conjecture on a
general solution is presented.

1. Introduction

We consider the functional equation

α
(
3x+y

4

)
− α (x)

α
(
x+y
2

)
− α (x)

(
3− 2

α
(
x+y
2

)
− α (x)

α (y)− α (x)

)
= 1,

in two variables where the unknown function α is continuous and strictly mono-
tonic in a real interval. It is easy to verify that any homographic function is a
solution. In section 2 we present some motivation. In section 3 we show that
this equation is a consequence of a more complicated functional equation in
three variables (∗) appearing in connection with the problem of existence of
discontinuous Jensen affine functions in the sense of Beckenbach with respect

2010 AMS Mathematics Subject Classification: Primary 39B22, Secondary 39B12.

Key words and phrases: functional equation, homographic function.
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to the two parameter family of functions {bα+ c : b, c ∈ R}, and related to the
invariance of double ratios of four points.

In section 4, applying an M. Laczkovich theorem [4], we prove that if a
continuous function satisfies this equation in any interval (a0,∞) then it is a
homographic function.

In section 5, assuming some local regularity conditions, we consider some
related functional equations in a single variable. A possible application of the
celebrated regularity theorems of A. Járai [1] is mentioned.

2. Some motivations

In order to present a problem leading to the considered equation, take a
continuous and strictly monotonic function α defined on an interval I and
consider a two parameter family of functions defined by

Fα := {bα+ c : a, b ∈ R} .

The family Fα has the property: for every two points (x1, y1) , (x2, y2) ∈ I×R,
x1 �= x2, there is a unique function bα+ c in Fα such that

bα (x1) + c = y1, bα (x2) + c = y2;

more precisely, the real numbers

b =
y1 − y2

α(x1)− α(x2)
, c =

α(x1)y2 − α(x2)y1
α(x1)− α(x2)

are uniquely determined. Following a more general idea due to Beckenbach,
we say that a function f : I → R is convex with respect the family Fα, briefly,
Fα-convex, if for all x1, x2 ∈ I, x1 < x2, we have

f(x) ≤ bα(x) + c, x1 < x < x2,

where

b =
f(x1)− f(x2)

α(x1)− α(x2)
, c =

α(x1)f(x2)− α(x2)f(x1)

α(x1)− α(x2)
,

Fα-concave, if the reversed inequality is satisfied, and Fα-affine if it is both
Fα-convex and Fα-concave.

Note that a function f is Fα-affine iff f ∈ Fα.
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Adopting the idea of Jensen, we say that a function f : I → R is Jensen
Fα-convex if, for all x1, x2 ∈ I,

f

(
x1 + x2

2

)
≤ bα

(
x1 + x2

2

)
+ c,

where b and c are given by the above formula; Jensen Fα-concave if the reverse
inequality is satisfied, and Jensen Fα-affine if it is both Jensen Fα-convex and
Jensen Fα-concave, that is if, for all x1, x2 ∈ I,

f

(
x1 + x2

2

)
=

f(x1)− f(x2)

α(x1)− α(x2)
α

(
x1 + x2

2

)
+

α(x1)f(x2)− α(x2)f(x1)

α(x1)− α(x2)

or, equivalently

f

(
x1 + x2

2

)
=

α
(
x1+x2

2

)
− α(x2)

α(x1)− α(x2)
f(x1) +

α(x1)− α
(
x1+x2

2

)
α(x1)− α(x2)

f(x2).

For α := id |I one gets the classical notions of convex, concave, affine and Jensen
convex, Jensen concave and Jensen affine functions. It is known since Hamel
that there are discontinuous Jensen affine functions and that every Jensen affine
function f : I → R is of the form f(x) = A(x)+a, x ∈ I, where A is an additive
function and a ∈ R which, in general, does not belong to Fα. In this context
a natural question arises: determine all functions α : I → R which admit the
discontinuous Jensen Fα-affine functions.

In [7] it was shown that this problem leads to the following, quite compli-
cated, functional equation of three variables

(∗)

α
(
x+2y+z

4

)
− α (y)

α
(
x+z
2

)
− α (y)

·
α
(
x+z
2

)
− α (z)

α (x)− α (z)
=

=
α
(
x+2y+z

4

)
− α

(
y+z
2

)
α
(
x+y
2

)
− α

(
y+z
2

) ·
α
(
x+y
2

)
− α (y)

α (x)− α (y)

for all x, y, z ∈ I, (x+ z − 2y)(x− z)(x− y) �= 0.

Note that this equation can be written as the equality of the following two
double ratios:

α
(
x+2y+z

4

)
− α (y)

α
(
x+z
2

)
− α (y)

:
α
(
x+2y+z

4

)
− α

(
y+z
2

)
α
(
x+y
2

)
− α

(
y+z
2

) =

=
α
(
x+y
2

)
− α (y)

α (x)− α (y)
:
α
(
x+z
2

)
− α (z)

α (x)− α (z)
.
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Taking into account that for all admissible x, y, z ∈ I,

x+2y+z
4 − y

x+z
2 − y

:
x+2y+z

4 − y+z
2

x+y
2 − y+z

2

=
1

4
=

x+y
2 − y

x− y
:

x+z
2 − z

x− z

we conclude that any homographic function α satisfies equation (∗).
In [7] it was proved that a continuous and monotonic function satisfies (∗)

if, and only if α is any homographic function. This fact implies that a family
Fα admits discontinuous Jensen affine functions in the Beckenbach sense iff
α is a homographic function. In [7], as an application, an answer to a more
general question posed by Zs. Páles [8] is given.

3. A functional equation related to equation (∗)

We prove the following

Theorem 1. Let I ⊂ R be an interval. If a continuous function α : I → R
satisfies equation (∗), then it is strictly monotonic and

(1)
α
(
3x+y

4

)
− α (x)

α
(
x+y
2

)
− α (x)

(
3− 2

α
(
x+y
2

)
− α (x)

α (y)− α (x)

)
= 1, x, y ∈ I, x �= y.

Proof. Equation (∗) implies that α is one-to-one. The continuity of α
implies that it is strictly monotonic. By the continuity of α, letting x → y in
(∗), we infer that, for every y ∈ I, the limit

(2) ϕ(y) := lim
x→y

α
(
x+y
2

)
− α (y)

α (x)− α (y)

exists and, for all y �= z,

(3)
α
(
3y+z

4

)
− α (y)

α
(
y+z
2

)
− α (y)

α
(
y+z
2

)
− α (z)

α (y)− α (z)
=

α
(
3y+z

4

)
− α

(
y+z
2

)
α (y)− α

(
y+z
2

) ϕ(y).

Similarly, letting y → x in (∗), we infer that, for every x ∈ I, the limit

(4) ψ(x) := lim
y→x

α
(
x+y
2

)
− α (y)

α (x)− α (y)
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exists and, for all x �= z,

α
(
3x+z

4

)
− α (x)

α
(
x+z
2

)
− α (x)

α
(
x+z
2

)
− α (z)

α (x)− α (z)
=

α
(
3x+z

4

)
− α

(
x+z
2

)
α (x)− α

(
x+z
2

) ψ(x).

Thus

(5) ψ = ϕ.

Hence, letting x → z in (∗), making use of the definitions of ϕ and ψ and the
identity

α

(
x+ 2y + z

4

)
= α

(
x+y
2 + y+z

2

2

)
we get

α
(
y+z
2

)
− α (y)

α (z)− α (y)
ϕ(z) = ϕ

(
y + z

2

)
α
(
z+y
2

)
− α (y)

α (z)− α (y)
,

for y �= z, whence

ϕ(z) = ϕ

(
y + z

2

)
, y �= z,

and, consequently, ϕ is a constant function in I.

Letting x→ y in the identity

α
(
x+y
2

)
− α (y)

α (x)− α (y)
+

α(x)− α
(
x+y
2

)
α (x)− α (y)

= 1

and making use of (2), (4) we get ϕ+ ψ = 1, whence by (5),

ϕ =
1

2
.

Now, from (3), we get

α
(
3y+z

4

)
− α (y)

α
(
y+z
2

)
− α (y)

α
(
y+z
2

)
− α (z)

α (y)− α (z)
=

1

2

α
(
3y+z

4

)
− α

(
y+z
2

)
α (y)− α

(
y+z
2

)
for y �= z. Since

α
(
3y+z

4

)
− α

(
y+z
2

)
α (y)− α

(
y+z
2

) = 1−
α
(
3y+z

4

)
− α (y)

α
(
y+z
2

)
− α(y)

we get

α
(
3y+z

4

)
− α (y)

α
(
y+z
2

)
− α (y)

α
(
y+z
2

)
− α (z)

α (y)− α (z)
=

1

2

(
1−

α
(
3y+z

4

)
− α (y)

α
(
y+z
2

)
− α(y)

)
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that is, for y �= z,

α
(
3y+z

4

)
− α (y)

α
(
y+z
2

)
− α (y)

(
α
(
y+z
2

)
− α (z)

α (y)− α (z)
+

1

2

)
=

1

2
.

Since
α
(
y+z
2

)
− α (z)

α (y)− α (z)
= 1−

α (y)− α
(
y+z
2

)
α (y)− α (z)

we get, for all y, z ∈ I, y �= z,

α
(
3y+z

4

)
− α (y)

α
(
y+z
2

)
− α (y)

(
3

2
−

α
(
y+z
2

)
− α (y)

α (z)− α (y)

)
=

1

2
,

which was to be shown. �

Remark 1. Let A : R→ R be an arbitrary additive function and a, b, c, d ∈
∈ R be such that ad − bc �= 0. Then it is easy to check that the function α
given by

α(x) :=
aA(x) + b

cA(x) + d

is a solution of equation (1) (as well as of equation (∗)).

Remark 2. A function α : I → R satisfies equation (1) iff so does the
function h ◦ α, where h is an arbitrary nonconstant homographic function.

Remark 3. Let k,m, p, q ∈ R, kp �= 0 be arbitrarily fixed. A function
α : I → R satisfies equation (1) iff the function β(x) = kα(px + q) + m
satisfies equation (1) with α replaced by β and the interval I replaced by
J := {x ∈ R : px+ q ∈ I} .

Remark 4. Interchanging x and y in (1) and then eliminating α
(
y+z
2

)
from both equations we obtain the functional equation

[α (x)− α (x)]

[
α

(
3x+ y

4

)
− α

(
x+ 3y

4

)]
=

= 8

[
α (y)− α

(
3x+ y

4

)][
α

(
3x+ y

4

)
− α (x)

]
,

x, y ∈ I,

which can be written in the form

8α (x)α (y) + α (x)α

(
3x+ y

4

)
+ α (y)α

(
x+ 3y

4

)
+

+8α

(
3x+ y

4

)
α

(
x+ 3y

4

)
= 9α (x)α

(
x+ 3y

4

)
+ 9α (y)α

(
3x+ y

4

)
,
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whence

8α (x)α (y)

α
(
x+3y

4

)
α
(
3x+y

4

) +
α (x)− 9α (y)

α
(
x+3y

4

) +
α (y)− 9α (x)

α
(
3x+y

4

) + 8 = 0.

Remark 5. Interchanging x and y in (1) we obtain the simultaneous system
of functional equations

α

(
3x+ y

4

)
=

α
(
x+y
2

)
[3α (x)− α (y)]− 2α (x)α (y)

2α
(
x+y
2

)
+ α (x)− 3α (y)

α

(
x+ 3y

4

)
=

α
(
x+y
2

)
[3α (y)− α (x)]− 2α (x)α (y)

2α
(
x+y
2

)
+ α (y)− 3α (x)

,

which can be iterated.

4. Main result

In this section we need the following result which is a special case of
M. Laczkovich theorem [4].

Lemma 1. (M. Laczkovich [4]) Let p, q, A,B be positive and such that log p
log q

is irrational. If λ1, λ2 are the roots of the equation

Apλ +Bqλ = 1

then every nonnegative measurable solution f : (0,∞) → (0,∞) of the func-
tional equation

f(x) = Af(px) +Bf(qx), x > 0,

is of the form
f(x) = rxλ1 + sxλ2 , x > 0.

Remark 6. If A + B = 1 then the condition of positivity of the solution
can be replaced by a weaker condition of the boundedness below.

Lemma 2. Let p,A be positive numbers and p < 1. If for some δ > 0, a
function f : (0,∞)→ R is strictly increasing and positive in an interval (0, δ)
and satisfies the functional equation

f(x) = (1 +A)f(px)−Af(p2x), x > 0,

then f is positive in (0,∞).
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Proof. Suppose that f satisfies the assumptions of the lemma. Putting
ϕ(x) := f(x)− f(px) for x > 0 we get

ϕ(x) = f(x)− f(px) = A
[
f(px)− f(p2x)

]
= Aϕ(px),

whence, by induction,

ϕ(x) = Anϕ(pnx), n ∈ N, x > 0.

Take an arbitrary x > 0. Since p < 1, there is an n0 ∈ N such that pnx ∈ (0, δ)
for all n ∈ N, n ≥ n0. Since f is increasing in (0, δ), we get

ϕ(x) = Anϕ(pnx) = An
[
f(pnx)− f(pn+1x)

]
> 0, n ≥ n0,

whence
ϕ(x) > 0, x > 0,

and, consequently,
f(x) > f(px), x > 0.

Hence, by induction,

f(x) > f(pnx), x > 0, n ∈ N.

Since f is strictly increasing and positive in (0, δ), letting n → ∞ we get
f(x) > 0 for all x > 0 which was to be shown. �

The main result reads as follows.

Theorem 2. Let a0 ∈ R be fixed. A continuous function α : (a0,∞) → R
satisfies equation (1) if and only if, α is a homographic function, i.e.

α(x) =
ax+ b

cx+ d
, x > a0,

for some a, b, c, d ∈ R, ad �= bc.

Proof. Suppose that a continuous function α : (a0,∞)→ R satisfies equa-
tion (1). By (1) it must be strictly monotonic in (a0,∞). Without loss of
generality we can assume that α is strictly increasing. Take arbitrary x0 > 0
and define β : (0,∞)→ R, β(x) := α(x+x0)−α(x0). Of course β is continuous,
strictly increasing, β(0) = 0 and, by Remarks 2 and 3, β satisfies equation (1),
that is

β
(
3x+y

4

)
− β (x)

β
(
x+y
2

)
− β (x)

(
3− 2

β
(
x+y
2

)
− β (x)

β (y)− β (x)

)
= 1, x, y > 0, x �= y.
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Setting y = 0 we get

β
(
3x
4

)
− β (x)

β
(
x
2

)
− β (x)

(
3− 2

β
(
x
2

)
− β (x)

−β (x)

)
= 1, x > 0,

which, after simple calculation, can be written in the equivalent form

3

β
(
3x
4

) =
1

β
(
x
2

) +
2

β (x)
, x > 0.

It follows that the function f : (0,∞)→ (0,∞),

f(x) :=
1

β (x)
, x > 0,

is decreasing and satisfies the functional equation

f(x) = 1
3f

(
2
3x
)
+ 2

3f
(
4
3x
)
, x > 0.

Put p = 2
3 , q = 4

3 , A = 1
3 , B = 2

3 . Note that log p
log q is irrational and the only

solutions of the equation Apλ +Bqλ = 1, that is

1

3

(
2

3

)λ

+
2

3

(
4

3

)λ

= 1

are the numbers λ1 = 0 and λ2 = −1. By Lemma 1 there are r, s ∈ R, such
that

f(x) = rx0 + sx−1 = r +
s

x
, x > 0.

Thus, by the definition of f,

β(x) =
1

f(x)
=

x

rx+ s
, x > 0,

where, obviously, s �= 0. Now the definition of β implies that

α(x+ x0) = α (x0) +
x

rx+ s
, x > 0.

It follows that α is a homographic function in the interval (x0,∞), i.e.

α(x) =
ax+ b

cx+ d
, x > x0,

for some a, b, c, d ∈ R, ad �= bc. Since x0 > a0 is arbitrarily chosen, the proof is
completed. �
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5. Some related functional equations

Assume that a one-to-one function α satisfies equation (1) in the interval
I. Take an x0 ∈ I and define a function β by

(6) β(x) = α(x+ x0)− α(x0), x ∈ J := I − x0.

In view of Remark 3 the function β satisfies equation (1) in the interval J, i.e.

(7)
β
(
3x+y

4

)
− β (x)

β
(
x+y
2

)
− β (x)

(
3− 2

β
(
x+y
2

)
− β (x)

β (y)− β (x)

)
= 1, x, y ∈ J, x �= y.

Since β(0) = 0, setting here x = 0 and then replacing y by x we get

β
(
x
4

)
β
(
x
2

) (3− 2
β
(
x
2

)
β (x)

)
= 1, x ∈ J, x �= 0.

It follows that ϕ : J → R defined by

(8) ϕ(x) :=
β
(
x
2

)
β (x)

, x �= 0,

satisfies the functional equation

ϕ
(x
2

)
[3− 2ϕ (x)] = 1, x ∈ J, x �= 0.

If the limit η := limx→0 ϕ (x) exists then, obviously, η �= 0. Setting ϕ(0) := η,
we see that ϕ satisfies the functional equation

(9) ϕ (x) =
3

2
− 1

2ϕ
(
x
2

) , x ∈ J.

Theorem 3. Let J ⊂ R be an interval such that 0 ∈ J. Suppose that
ϕ : J → R satisfies equation (9). Then either ϕ(0) = 1 or ϕ(0) = 1

2 . Moreover,

1. if ϕ(0) = 1 and
ϕ(x) = 1 + 0(x), x→ 0,

then ϕ satisfies (9) iff ϕ ≡ 1 in J ;

2. if ϕ(0) = 1
2 and, for some p ∈ R,

ϕ(x) =
1

2
+ px+ 0(x2), x→ 0,
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then ϕ satisfies (9) iff

(10) ϕ(x) =
4px+ 1

4px+ 2
, x ∈ J.

Proof. Setting x = 0 in (9) we get η = 3
2 −

1
2η for η := ϕ(0), whence either

η = 1 or η = 1
2 .

Putting f(x) = x
2 for x ∈ J and H(y) := 3

2 −
1
2y for all y ∈ R we can write

equation (9) in the form

ϕ(x) = H(ϕ[f(x)]), x ∈ J.

In the case when η = 1 we have H ′(η) = 1
2 , whence, by the continuity of H ′

at the point η = 1 we infer that there exists a θ ∈ [ 12 , 1) and δ > 0 such that

(11) |H(y1)−H(y2)| ≤ θ |y1 − y2|

for all y ∈ (η − δ, η + δ). Since 0 ≤ f(x) ≤ sx for all x ∈ J with s = 1
2 and

sθ < 1, by applying a general uniqueness theorem [5, Theorem 1] (cf. also [4],
p. 200-201), we conclude that there exists at most one continuous solution ϕ
such that ϕ(0) = 1. Since the constant function ϕ ≡ 1 satisfies equation (9),
the first part of the theorem is proved.

In the case when η = 1
2 we have H ′(η) = 2. By the continuity of H ′ there

exists θ ∈ [2, 4) and δ > 0 such that (11) is fulfilled for all y ∈ (η − δ, η + δ)
and s2θ = 1

2 < 1. Since the function (10) is a solution of (9) and

ϕ(x) =
1

2
+ px− 4px2

4px+ 1
=

1

2
+ px+ 0(x2), x→ 0,

the uniqueness of ϕ follows from the already cited theorem in [5]. This com-
pletes the proof. �

Now applying this result we prove

Theorem 4. Let I ⊂ R be an interval. Suppose that the function α : I → R
satisfies equation (1). If for some x0 ∈ I there exists the limit

η := lim
x→0

α
(
x
2 + x0

)
− α(x0)

α (x+ x0)− α(x0)
,

then η = 1
2 . If moreover, for some p ∈ R,

α
(
x
2 + x0

)
− α(x0)

α (x+ x0)− α(x0)
=

1

2
+ px+ 0(x2), x→ 0,



200 J. Matkowski

and α is continuous at least at one point x1 ∈ I, x1 �= x0, then

α(x) =
ax+ b

cx+ d
, x ∈ I,

for some a, b, c, d ∈ R, ad �= bc.

Proof. Suppose that α : I → R satisfies equation (1). Take an x0 ∈ I,
put J := I − x0 and define the function β : J → R by (6). By Remark 3, β
satisfies equation (7). According to what we have observed at the beginning of
this section, the function ϕ defined by (8) satisfies equation (9) and

ϕ(x) :=
α
(
x
2 + x0

)
− α(x0)

α (x+ x0)− α(x0)
x ∈ J.

By the first statement of Theorem 3 either η = 1 or η = 1
2 . Assume first that

η = 1. Then
β
(
x
2

)
β (x)

= 1, x ∈ J,

would imply that β and, consequently α, would be constant function. This is
a contradiction, as every function satisfying (1) must be one-to-one.

Consider the case when η = 1
2 . Now from Theorem 3 we get

β
(
x
2

)
β (x)

=
4px+ 1

4px+ 2
, x ∈ J,

or equivalently, setting q := 4p,

(12) β
(x
2

)
=

qx+ 1

qx+ 2
β (x) , x ∈ J,

for some q ∈ R, q �= 0, which can be written in the form

(13)
(x
2
+ 1

)
β
(x
2

)
=

1

2
(x+ 1)β (x) , x ∈ J.

Setting y = 0 in (1) we get

β
(
3x
4

)
− β (x)

β
(
x
2

)
− β (x)

(
3 + 2

β
(
x
2

)
− β (x)

β (x)

)
= 1, x ∈ J, x �= 0.

Applying here (12) we obtain

β
(
3x
4

)
− β (x)

qx+1
qx+2β (x)− β (x)

(
3 + 2

qx+1
qx+2β (x)− β (x)

β (x)

)
= 1, x ∈ J, x �= 0,
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which reduces to the equation

(14)

(
q
3

4
x+ 1

)
β

(
3

4
x

)
=

3

4
(qx+ 1)β (x) , x ∈ J.

By (13) and (14) the function γ : J → R defined by

γ(x) = (qx+ 1)β (x) , x ∈ J,

the simultaneous system of functional equations

γ
(x
2

)
=

1

2
γ (x) , γ

(
3

4
x

)
=

3

4
γ (x) , x ∈ J.

It is easy to show (taking into account that γ(0) = 0), that the function γ
can be uniquely extended to the function satisfying this system of equations,
respectively in [0,∞) or (−∞, 0] or in R depending on whether x0 is the left
end point of I, the right endpoint of I or the interior point of I. Assume for
instance that x0 is the left end point of I and, for convenience, denote this
extension by γ. Since (log 1

2 )/(log
3
4 ) is irrational and γ is continuous at a point

in the interval (0,∞), we infer that (cf. [6]),

γ(x) = γ(1)x, x ≥ 0.

By the definition of γ we get

β(x) =
γ(1)x

qx+ 1
, x ∈ J,

whence, by the definition of β we get the result. In the case when x0 is the right
end point of I the argument is analogous. In the case when x0 is an interior
point of I, then, according to the previous cases, α must be a homographic
function at least at one of the intervals I ∩ [x0,∞) and I∩ (−∞, x0]. In this
case equation (1) easily implies that α is a homographic function in the interval
I. This completes the proof. �

For the discussion the question if the regularity conditions assumed in The-
orems 3 and 4 can be omitted consider

Remark 7. Equation (1) is equivalent to the functional equation

(15)
α(y) =

α (x)
[
3α

(
x+y
2

)
− α

(
3x+y

4

)]
− 2α

(
x+y
2

)
α
(
3x+y

4

)
2α (x) + α

(
x+y
2

)
− 3α

(
3x+y

4

)
x, y ∈ I, x �= y.
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Proof. Assume that α is one-to-one and satisfies equation (1). From (1),
for all x, y ∈ I, x �= y, we have

α(y)

[
2α (x) + α

(
x+ y

2

)
− 3α

(
3x+ y

4

)]
=

= α (x)

[
3α

(
x+ y

2

)
− α

(
3x+ y

4

)]
− 2α

(
x+ y

2

)
α

(
3x+ y

4

)
.

Suppose that 2α (x) + α
(
x+y
2

)
− 3α

(
3x+y

4

)
= 0, that is

α

(
3x+ y

4

)
=

2

3
α (x) +

1

3
α

(
x+ y

2

)
for some x, y ∈ I, x �= y. Setting this to the right-hand side of the above equality

we get
[
α (x)− α

(
x+y
2

)]2
= 0, whence y = x, as α is one-to-one. Thus equation

(1) implies (15). The converse implication is obvious. �

Remark 8. Thus equation (15) is of the form

α(y) = h

(
α(x), α

(
x+ y

2

)
α

(
3x+ y

4

))
,

where

h (z1, z2, z3) =
z1z3 − 3z1z2 + 2z2z3

3z3 − z2 + 2z1

and one could try to employ the celebrated regularity theory due to Antal
Járai [1] by the assumption that the unknown function α is monotonic, so it
is a.e. differentiable. To get its differentiability one could apply Theorem 17.6
in [1], and then, to get higher regularity, Theorem 15.2. At this background a
question arises if the lack of regularity of h at the points (z1, z2, z3) such that
3z3 − z2 + 2z1 = 0 is a serious difficulty.
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Podgórna 50
PL-65246 Zielona Góra
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EXPONENTIAL UNITARY DIVISORS

Nicuşor Minculete (Braşov, Romania)

László Tóth (Pécs, Hungary)

Dedicated to Professor Antal Járai on his 60th birthday

Abstract. We say that d is an exponential unitary divisor of n =
= pa1

1 · · · par
r > 1 if d = pb11 · · · pbrr , where bi is a unitary divisor of ai, i.e.,

bi | ai and (bi, ai/bi) = 1 for every i ∈ {1, 2, . . . , r}. We survey properties
of related arithmetical functions and introduce the notion of exponential
unitary perfect numbers.

1. Introduction

Let n be a positive integer. We recall that a positive integer d is called a
unitary divisor of n if d | n and (d, n/d) = 1. Notation: d |∗ n. If n > 1 and
has the prime factorization n = pa1

1 · · · par
r , then d |∗ n iff d = pu1

1 · · · pur
r , where

ui = 0 or ui = ai for every i ∈ {1, 2, . . . , r}. Also, 1 |∗ 1.

Furthermore, d is said to be an exponential divisor (e-divisor) of n =
= pa1

1 · · · par
r > 1 if d = pe11 · · · perr , where ei | ai, for any i ∈ {1, 2, . . . , r}.

Notation: d |e n. By convention 1 |e 1.
Let τ∗(n) :=

∑
d|∗n 1, σ

∗(n) :=
∑

d|∗n d and τ (e)(n) :=
∑

d|en 1, σ
(e)(n) :=

:=
∑

d|en d denote, as usual, the number and the sum of the unitary divisors

2010 Mathematics Subject Classification: 11A05, 11A25, 11N37.

Key words and phrases: Unitary divisor, exponential divisor, number of divisors, sum of
divisors, Euler’s function, perfect number.
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of n and of the e-divisors of n, respectively. These functions are multiplicative
and one has

(1) τ∗(n) = 2ω(n), σ∗(n) = (1 + pa1
1 ) · · · (1 + par

r ),

(2) τ (e)(n) = τ(a1) · · · τ(ar), σ(e)(n) =

⎛⎝∑
d1|a1

pd1
1

⎞⎠ · · ·
⎛⎝∑

dr|ar

pdr
r

⎞⎠ ,

where ω(n) :=
∑

p|n 1 is the number of distinct prime divisors of n, and τ(n) :=

:=
∑

d|n 1 stands for the number of divisors of n.

Note that if n is squarefree, then d |∗ n iff d | n, and τ∗(n) = τ(n),
σ∗(n) = σ(n) :=

∑
d|n d.

Closely related to the concepts of unitary and exponential divisors are the
unitary convolution and the exponential convolution (e-convolution) of arith-
metic functions defined by

(3) (f × g)(n) =
∑
d|∗n

f(d)g(n/d), n ≥ 1,

and by (f � g)(1) = f(1)g(1),

(4) (f � g)(n) =
∑

b1c1=a1

· · ·
∑

brcr=ar

f(pb11 · · · pbrr )g(pc11 · · · pcrr ), n > 1,

respectively.

The function I(n) = 1 (n ≥ 1) has inverses with respect to the uni-
tary convolution and e-convolution given by μ∗(n) = (−1)ω(n) and μ(e)(n) =
= μ(a1) · · ·μ(ar), μ(e)(1) = 1, respectively, where μ is the Möbius function.
These are the unitary and exponential analogues of the Möbius function.

Unitary divisors (called block factors) and the unitary convolution (called
compounding of functions) were first considered by R. Vaidyanathaswamy [23].
The current terminology was introduced by E. Cohen [1, 2]. The notions of
exponential divisor and exponential convolution were first defined by M. V.
Subbarao [15]. Various properties of arithmetical functions defined by unitary
and exponential divisors, including the functions τ∗, σ∗, μ∗, τ (e), σ(e), μ(e) and
properties of the convolutions (3) and (4) were investigated by several authors.

A positive integer n is said to be unitary perfect if σ∗(n) = 2n. This
notion was introduced by M. V. Subbarao and L. J. Warren [16]. Until now
five unitary perfect numbers are known. These are 6 = 2 · 3, 60 = 22 · 3 · 5,
90 = 2 · 32 · 5, 87 360 = 26 · 3 · 5 · 7 · 13 and the following number of 24 digits:
146 361 946 186 458 562 560 000 = 218 · 3 · 54 · 7 · 11 · 13 · 19 · 37 · 79 · 109 · 157 · 313.
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It is conjectured that there are finitely many such numbers. It is easy to see
that there are no odd unitary perfect numbers.

An integer n is called exponentially perfect (e-perfect) if σ(e)(n) = 2n.
This originates from M. V. Subbarao [15]. The smallest e-perfect number is
36 = 22 · 32. If n is any squarefree number, then σ(e)(n) = n, and 36n is e-
perfect for any such n with (n, 6) = 1. Hence there are infinitely many e-perfect
numbers. Also, there are no odd e-perfect numbers, cf. [14]. The squarefull
e-perfect numbers under 1010 are: 22 · 32, 23 · 32 · 52, 22 · 33 · 52, 24 · 32 · 112,
24 · 33 · 52 · 112, 26 · 32 · 72 · 132, 27 · 32 · 52 · 72 · 132, 26 · 33 · 52 · 72 · 132. It is not
known if there are infinitely many squarefull e-perfect numbers, see [4, p. 110].

For a survey on results concerning unitary and exponential divisors we refer
to the books [10] and [12]. See also the papers [3, 5, 8, 9, 11, 13, 18, 19, 20]
and their references.

M.V. Subbarao [15, Section 8] says: ,,We finally remark that to every given
convolution of arithmetic functions, one can define the corresponding expo-
nential convolution and study the properties of arithmetical functions which
arise therefrom. For example, one can study the exponential unitary convolu-
tion, and in fact, the exponential analogue of any Narkiewicz-type convolution,
among others.”

While such convolutions were investigated by several authors, cf. [7, 6], it
appears that arithmetical functions corresponding to the exponential unitary
convolution mentioned above were not considered in the literature.

It is the aim of this paper to overcome this shortage. Combining the notions
of e-divisors and unitary divisors we consider in this paper exponential unitary
divisors (e-unitary divisors). We review properties of the corresponding τ , σ,
μ and Euler-type functions. It turns out that the asymptotic behavior of these
functions is similar to those of the functions τ (e), σ(e), μ(e) and φ(e) (the latter
one will be given in Section 3). We define the e-unitary perfect numbers, which
were not considered before, and state some open problems.

2. Exponential unitary divisors

We say that d is an exponential unitary divisor (e-unitary divisor) of n =
= pa1

1 · · · par
r > 1 if d = pb11 · · · pbrr , where bi |∗ ai, for any i ∈ {1, 2, . . . , r}.

Notation: d |e∗ n. By convention 1 |e∗ 1.

For example, the e-unitary divisors of n = p12, with p prime, are d =
= p, p3, p4, p12, while its e-divisors are d = p, p2, p3, p4, p6, p12.
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Let τ (e)∗(n) :=
∑

d|e∗n 1 and σ(e)∗(n) :=
∑

d|e∗n d denote the number and
the sum of the e-unitary divisors of n, respectively. It is immediate that these
functions are multiplicative and we have

(5)

τ (e)∗(n) = τ∗(a1) · · · τ∗(ar) = 2ω(a1)+...+ω(ar),

σ(e)∗(n) =

⎛⎝ ∑
d1|∗a1

pd1
1

⎞⎠ · · ·
⎛⎝ ∑

dr|∗ar

pdr
r

⎞⎠ .

If n is e-squarefree, i.e., n = 1 or n > 1 and all the exponents in the prime
factorization of n are squarefree, then d |e∗ n iff d |e n, and τ (e)∗(n) = τ (e)(n),
σ(e)∗(n) = σ(e)(n).

Note that for any n > 1 the values τ (e)∗(n) and σ(e)∗(n) are even.

The corresponding exponential unitary convolution (e-unitary convolution)
is given by

(f �∗ g)(1) = f(1)g(1),

(f �∗ g)(n) =
∑

b1c1=a1

(b1,c1)=1

· · ·
∑

brcr=ar

(br,cr)=1

f(pb11 · · · pbrr )g(pc11 · · · pcrr ),(6)

with the notation n = pa1
1 · · · par

r > 1.

The arithmetical functions form a commutative semigroup under (6) with
identity μ2. A function f has an inverse with respect to the e-unitary convolu-
tion iff f(1) �= 0 and f(p1 · · · pk) �= 0 for any distinct primes p1, . . . , pk.

The inverse of the function I(n) = 1 (n ≥ 1) with respect to the e-unitary
convolution is the function μ(e)∗(n) = μ∗(a1) · · ·μ∗(ar) = (−1)ω(a1)+...+ω(ar),
μ(e)∗(1) = 1.

These properties of convolution (6) are special cases of those of a more gen-
eral convolution, involving regular convolutions of Narkiewicz-type, mentioned
in the Introduction.

Remark. It is possible to define ,,unitary exponential divisors” (in the
reverse order) in the following way. An integer d is a unitary exponential
divisor (unitary e-divisor) of n = pa1

1 · · · par
r > 1 if d | n and the integers d and

n/d are exponentially coprime. This means that, denoting d = pb11 · · · pbrr , we
require d and n/d to have the same prime factors as n, i.e., 1 ≤ bi < ai, and
(bi, ai − bi) = 1 for any i ∈ {1, 2, . . . , r}. This is fulfilled iff n is squarefull, i.e.,
ai ≥ 2 and (bi, ai) = 1 for every i ∈ {1, 2, . . . , r}. Hence the number of unitary
e-divisors of n > 1 is φ(a1) · · ·φ(ar) (φ is Euler’s function) or 0, depending
on whether n is squarefull or not. We do not go into other details here. For
exponentially coprime integers cf. [18].
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3. Arithmetical functions defined by exponential unitary divisors

As noted before, the functions τ (e)∗ and σ(e)∗ are multiplicative. Also,
for any prime p, τ (e)∗(p) = 1, τ (e)∗(p2) = 2, τ (e)∗(p3) = 2, τ (e)∗(p4) = 2,
τ (e)∗(p5) = 2, ..., σ(e)∗(p) = p, σ(e)∗(p2) = p+p2, σ(e)∗(p3) = p+p3, σ(e)∗(p4) =
= p + p4, σ(e)∗(p5) = p + p5, .... Observe that the first difference compared
with the functions τ (e) and σ(e) occurs for p4 (which is not e-squarefree).

The function τ (e)∗(n) is identical with the function t(e)(n), defined as the
number of e-squarefree e-divisors of n and investigated by L. Tóth [20]. Ac-
cording to [20, Th. 4],

(7)
∑
n≤x

τ (e)∗(n) = C1x+ C2x
1/2 +O(x1/4+ε),

for every ε > 0, where C1, C2 are constants given by

(8) C1 :=
∏
p

(
1 +

1

p2
+

∞∑
a=6

2ω(a) − 2ω(a−1)

pa

)
,

(9) C2 := ζ(1/2)
∏
p

(
1 +

∞∑
a=4

2ω(a) − 2ω(a−1) − 2ω(a−2) + 2ω(a−3)

pa/2

)
.

The error term of (7) was improved to O(x1/4) by Y.-F. S. Pétermann [11,
Th. 1] showing that

(10)

∞∑
n=1

t(e)(n)

ns
=

ζ(s)ζ(2s)

ζ(4s)
H(s), Re s > 1,

where H(s) =
∑∞

n=1
h(n)
ns is absolutely convergent for Re s > 1/6.

For the maximal order of the function τ (e)∗ we have

(11) lim sup
n→∞

log τ (e)∗(n) log log n
log n

=
1

2
log 2,

this is proved (for t(e)(n)) in [20, Th. 5]. (11) holds also for the function τ (e)

instead of τ (e)∗, cf. [15].
For the maximal order of the function σ(e)∗ we have

Theorem 1.

(12) lim sup
n→∞

σ(e)∗(n)
n log log n

=
6

π2
eγ ,

where γ is Euler’s constant.
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Proof. This is a direct consequence of the following general result of
L. Tóth and E. Wirsing [22, Cor. 1]: Let f be a nonnegative real-valued multi-
plicative function. Suppose that for all primes p we have �(p) := supν≥0 f(p

ν) ≤
≤ (1 − 1/p)−1 and that for all primes p there is an exponent ep = po(1) such
that f(pep) ≥ 1 + 1/p. Then

(13) lim sup
n→∞

f(n)

log log n
= eγ

∏
p

(
1− 1

p

)
�(p).

Apply this for f(n) = σ(e)∗(n)/n. Here f(p) = 1, f(p2) = 1 + 1/p and for
a ≥ 2, f(pa) ≤ σ(e)(pa)/pa ≤ 1+1/p. Hence �(p) = 1+1/p and we can choose
ep = 2 for all p. �

(12) holds also for the function σ(e) instead of σ(e)∗. For the function μ(e)∗

one has:

Theorem 2. (i) The Dirichlet series of μ(e)∗ is of the form

(14)

∞∑
n=1

μ(e)∗(n)
ns

=
ζ(s)

ζ2(2s)
W (s), Re s > 1,

where W (s) :=
∑∞

n=1
w(n)
ns is absolutely convergent for Re s > 1/4.

(ii)

(15)
∑
n≤x

μ(e)∗(n) = C3x+O(x1/2 exp(−c(log x)Δ),

where

(16) C3 :=
∏
p

(
1 +

∞∑
a=2

(−1)ω(a) − (−1)ω(a−1)

pa

)
,

and Δ = 9/25− ε for every ε > 0, where 9/25 = 0.36, and c > 0 are constants

Proof. A similar result was proved for the function μ(e) in [20, Th. 2] (with
the auxiliary Dirichlet series absolutely convergent for Re s > 1/5). The same
proof works out in case of μ(e)∗. The error term can be improved assuming the
Riemann hypothesis, cf. [20]. �

The unitary analogue of Euler’s arithmetical function, denoted by φ∗ is
defined as follows. Let (k, n)∗ := max{d ∈ N : d | k, d |∗ n} and let

(17) φ∗(n) := #{k ∈ N : 1 ≤ k ≤ n, (k, n)∗ = 1},
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which is multiplicative and φ∗(pa) = pa − 1 for every prime power pa (a ≥ 1).
Why do we not consider here the greatest common unitary divisor of k and
n? Because if we do so the resulting function is not multiplicative and its
properties are not so close to those of Euler’s function φ, cf. [21].

Furthermore, for n = pa1
1 · · · par

r > 1 let φ(e)(n) denote the number of
divisors d of n such that d and n are exponentially coprime, i.e., d = pb11 · · · pbrr ,
where 1 ≤ bi ≤ ai and (bi, ai) = 1 for any i ∈ {1, . . . , r}. By convention, let
φ(e)(1) = 1. This is the exponential analogue of the Euler function, cf. [19].
Here φ(e) is multiplicative and

(18) φ(e)(n) = φ(a1) · · ·φ(ar), n > 1.

We define the e-unitary Euler function in the following way: for n =
= pa1

1 · · · par
r > 1 let φ(e)∗(n) denote the number of divisors d of n such that

d = pb11 · · · pbrr , where 1 ≤ bi ≤ ai and (bi, ai)∗ = 1 for any i ∈ {1, . . . , r}. By
convention, let φ(e)∗(1) = 1. Then φ(e)∗ is multiplicative and

(19) φ(e)∗(n) = φ∗(a1) · · ·φ∗(ar), n > 1.

Theorem 3.

(20)
∑
n≤x

φ(e)∗(n) = C4x+ C5x
1/3 +O(x1/4+ε),

for every ε > 0, where C4, C5 are constants given by

(21) C4 :=
∏
p

(
1 +

∞∑
a=3

φ∗(a)− φ∗(a− 1)

pa

)
,

(22)

C5 := ζ(1/3)
∏
p

(
1 +

1

p4/3
+

∞∑
a=5

φ∗(a)− φ∗(a− 1)− φ∗(a− 3) + φ∗(a− 4)

pa/3

)
.

Proof. A similar result was proved for the function φ(e) in [19, Th. 1],
with error term O(x1/5+ε), improved to O(x1/5 log x) by Y.-F. S. Pétermann
[11, Th. 1]. The same proof works out in case of φ(e)∗. �

Theorem 4.

(23) lim sup
n→∞

log φ(e)∗(n) log log n
log n

=
log 4

5
.
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Proof. We apply the following general result given in [17]: Let F be a
multiplicative function with F (pa) = f(a) for every prime power pa, where f
is positive and satisfies f(n) = O(nβ) for some fixed β > 0. Then

(24) lim sup
n→∞

logF (n) log log n

log n
= sup

m≥1

log f(m)

m
.

Let F (n) = φ(e)∗(n), f(a) = φ∗(a), L(m) = (log f(m))/m. Here L(1) =
= L(2) = 0, L(3) = (log 2)/3 ≈ 0.231, L(4) = (log 3)/4 ≈ 0.274, L(5) =
= (log 4)/5 ≈ 0.277, L(6) = (log 5)/6 ≈ 0.268, L(7) = (log 6)/7 ≈ 0.255, and
L(m) ≤ (logm)/m ≤ (log 8)/8 ≈ 0.259 for m ≥ 8, using that (logm)/m is
decreasing. This proves the result. �

(23) holds also for the function φ(e) instead of φ(e)∗, cf. [19].

These results show that the asymptotic behavior of the functions τ (e)∗,
σ(e)∗, μ(e)∗ and φ(e)∗ is very close to those of the functions τ (e), σ(e), μ(e) and
φ(e).

This is confirmed also by the next result.

Theorem 5.

(25)

∑
n≤x

τ (e)∗(n)
τ (e)(n)

=

= x
∏
p

(
1 +

∞∑
a=4

2ω(a)/τ(a)− 2ω(a−1)/τ(a− 1)

pa

)
+O

(
x1/4 log x

)
.

A similar asymptotic formula, with the same error term, is valid also for
the quotients σ(e)∗(n)/σ(e)(n) and φ(e)(n)/φ(e)∗(n) (in the reverse order for the
last one).

Proof. This follows from the following general result, which may be
known. Let g be a complex valued multiplicative function such that |g(n)| ≤ 1
for every n ≥ 1 and g(p) = g(p2) = g(p3) = 1 for every prime p. Then

(26)
∑
n≤x

g(n) = x
∏
p

(
1 +

∞∑
a=4

g(pa)− g(pa−1)

pa

)
+O

(
x1/4 log x

)
.

In order to obtain (26), which is similar to [20, Th. 1], let h = g∗μ in terms of
the Dirichlet convolution. Then h is multiplicative, h(p) = h(p2) = h(p3) = 0,
h(pa) = g(pa) − g(pa−1) and |h(pa)| ≤ 2 for every prime p and every a ≥ 4.
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Hence |h(n)| ≤ �4(n)2
ω(n) for every n ≥ 1, where �4(n) stands for the charac-

teristic function of the 4-full integers. Note that

(27) �4(n)2
ω(n) =

∑
d4e=n

τ(d)v(e),

where the function v is given by

(28)

∞∑
n=1

v(n)

ns
=
∏
p

(
1 +

2

p5s
+

2

p6s
+

2

p7s
− 1

p8s
− 2

p9s
− 2

p10s
− 2

p11s

)
,

absolutely convergent for Re s > 1/5. We obtain (26) by usual estimates, cf.
the proof of [20, Th. 1]. �

Note also, that μ(e)(n)/μ(e)∗(n) = |μ(e)(n)| is the characteristic function of
the e-squarefree integers n. Asymptotic formulae for |μ(e)(n)| were given in
[24, Th. 2], [20, Th. 3].

4. Exponential unitary perfect numbers

We call an integer n exponential unitary perfect (e-unitary perfect) if
σ(e)∗(n) = 2n.

If n is e-squarefree, then n is e-unitary perfect iff n is e-perfect. Consider
the squarefull e-unitary perfect numbers. The first three such numbers given
in Introduction, that is 36 = 22 ·32, 1 800 = 23 ·32 ·52 and 2 700 = 22 ·33 ·52 are
e-squarefree, therefore also e-unitary perfect. It follows that there are infinitely
many e-unitary perfect numbers.

The smallest number which is e-perfect but not e-unitary perfect is 17 424 =
= 24 · 32 · 112.

Theorem 6. There are no odd e-unitary perfect numbers.

Proof. Let n = pa1
1 · · · par

r be an odd e-unitary perfect number. That is

(29) σ(e)∗(pa1
1 ) · · ·σ(e)∗(par

r ) = 2pa1
1 · · · par

r .

We can assume that a1, . . . , ar ≥ 2, i.e. n is squarefull (if ai = 1 for an i,
then σ(e)∗(pi) = pi and we can simplify in (29) by pi).

Now each σ(e)∗(pai
i ) =

∑
d|∗ai

pdi is even, since the number of terms is 2ω(ai),
which is even.
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From (29) we obtain that r = 1 and

(30) σ(e)∗(pa1
1 ) = 2pa1

1 .

Using that a1 ≥ 2 we have

(31) 2 =
σ(e)∗(pa1

1 )

pa1
1

≤ σ(e)(pa1
1 )

pa1
1

≤ 1 +
1

p1
≤ 1 +

1

3
< 2,

which is a contradiction, and the proof is complete. �

We state the following open problems.

Problem 1. Is there any e-unitary perfect number which is not e-squarefree,
therefore not e-perfect?

Problem 2. Is there any e-unitary perfect number which is not divisible
by 3?
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[8] Kátai, I. and M.V. Subbarao, On the distribution of exponential di-
visors, Annales Univ. Sci. Budapest., Sect. Comp., 22 (2003), 161–180.



Exponential unitary divisors 215
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CONTINUOUS MAPS ON MATRICES

TRANSFORMING GEOMETRIC MEAN

TO ARITHMETIC MEAN

Lajos Molnár (Debrecen, Hungary)

Dedicated to Professor Antal Járai

on the occasion of his sixtieth birthday

Abstract. In this paper we determine the general form of continuous maps
between the spaces of all positive definite and all self-adjoint matrices which
transform geometric mean to arithmetic mean or the other way round.

In the papers [6, 7] we determined the structure of all bijective maps on the
space of all positive semidefinite operators on a complex Hilbert space which
preserve the geometric mean, or the harmonic mean, or the arithmetic mean
of operators in the sense of Ando [1, 3]. In this short note we consider a
related question. The logarithmic function is a continuous function from the
set R+ of all positive real numbers to R that transforms geometric mean to
arithmetic mean. Similarly, the exponential function is a continuous function
from R to R+ that transforms arithmetic mean to geometric mean. Here we
investigate the structure of maps between the spaces of all positive definite and
all self-adjoint matrices with the analogous transformation properties.

Let us begin with the necessary definitions. For a given complex Hilbert
space H, denote by S(H) and P(H) the spaces of all bounded self-adjoint and
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all bounded positive definite (i.e., invertible bounded positive semidefinite)
operators on H, respectively. The geometric mean of A,B ∈ P(H) in Ando’s
sense is defined by

A#B = A1/2(A−1/2BA−1/2)1/2A1/2.

We remark that Ando defined the geometric mean for all positive semidefinite
operators, but in this note we consider only positive definite operators. The
most important properties of the operation # are listed below. Let A,B,C,D
be positive semidefinite operators on H.

(i) If A ≤ C and B ≤ D, then A#B ≤ C#D.

(ii) (Transfer property) We have S(A#B)S∗ = (SAS∗)#(SBS∗) for every
invertible bounded linear operator S on H.

(iii) Suppose A1 ≥ A2 ≥ . . . ≥ 0, B1 ≥ B2 ≥ . . . ≥ 0 and An → A, Bn → B
strongly. Then we have that An#Bn → A#B strongly.

(iv) A#B = B#A.

The arithmetic mean of A,B ∈ S(H) is defined in the natural way, i.e., by
(A+B)/2. For a finite dimensional Hilbert space H, our first result describes
those continuous maps from P(H) to S(H) which transform geometric mean
to arithmetic mean.

Theorem 1. Assume 2 ≤ dimH < ∞. Let φ : P(H) → S(H) be a
continuous map satisfying

(1) φ(A#B) =
φ(A) + φ(B)

2

for all A,B ∈ P(H). Then there are J,K ∈ S(H) such that φ is of the form

φ(A) = (log(detA))J +K, A ∈ P(H).

Proof. Considering the map φ(.)−φ(I) we may and do assume that φ(I) =
= 0. Inserting B = I into the equality (1) we obtain that φ(

√
A) = φ(A)/2.

Moreover, we compute

0 = φ(I) = φ(A#A−1) = (1/2)(φ(A) + φ(A−1))

which implies φ(A−1) = −φ(A) for every A ∈ P(H). For any A,B, T ∈ P(H),
using the uniqueness of the square root in P(H), it is easy to check that T =
= A−1#B holds if and only if TAT = B. From

φ(T ) = (1/2)(φ(A−1) + φ(B)) = (1/2)(φ(B)− φ(A))
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we obtain φ(B) = 2φ(T ) + φ(A). Therefore, we have

φ(TAT ) = 2φ(T ) + φ(A)

for any A, T ∈ P(H). Pick an arbitrary X ∈ S(H) and consider the functional
ϕX : A �→ exp(tr[φ(A)X]) on P(H). It is easy to see that ϕX : P(H)→ R is a
continuous function satisfying

ϕX(TAT ) = ϕX(T )ϕX(A)ϕX(A)

for all A, T ∈ P(H). In [4, Theorem 2] the structure of such functions has been
completely described. It follows from that result that there is a real number
cX such that ϕX(A) = (detA)cX (A ∈ P(H)). Therefore, we have

tr[φ(A)X] = cX log(detA)

for all A ∈ P(H). It follows from that formula that cX ∈ R depends linearly
on X, i.e., X �→ cX is a linear functional on S(H). By Riesz representation
theorem it follows that there is a J ∈ S(H) such that cX = tr[XJ ] for every
X ∈ S(H). Hence we obtain that

tr[φ(A)X] = cX log(detA) = tr[log(detA))JX]

holds for all A ∈ P(H) and X ∈ S(H). This gives us that

φ(A) = (log(detA))J

for every A ∈ P(H) and the statement of the theorem follows. �

Remark 1. One may ask what happens in the infinite dimensional case,
i.e., when dimH = ∞. The answer to that question is that φ is necessarily
constant. In order to see this, just as above, applying the simple and apparent
reduction φ(I) = 0, one can follow the first part of the proof to check that for
every vector x ∈ H, the continuous functional ϕx : A �→ exp(〈φ(A)x, x〉) maps
P(H) into the set of all positive real numbers and satisfies

ϕx(TAT ) = ϕx(T )ϕx(A)ϕx(A)

for all A, T ∈ P(H). Lemma in [5] states that then ϕx is necessarily identically
1. This gives us that 〈φ(A)x, x〉 = 0 for all x ∈ H and A ∈ P(H) which implies
φ ≡ 0.

In our second result we consider the reverse problem. We describe the form
of all continuous maps from S(H) to P(H) which transform arithmetic mean
to geometric mean.
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Theorem 2. Assume 2 ≤ dimH < ∞. Let φ : S(H) → P(H) be a
continuous map satisfying

(2) φ

(
A+B

2

)
= φ(A)#φ(B)

for all A,B ∈ S(H). Then there are a T ∈ P(H), a collection of mutually or-
thogonal rank-one projections Pi on H and a collection of self-adjoint operators
Ji ∈ S(H), i = 1, . . . , dimH such that φ is of the form

φ(A) = T

(dimH∑
i=1

(exp(tr[AJi]))Pi

)
T, A ∈ S(H).

Proof. Using the transfer property we see that considering the transfor-

mation φ(0)
−1/2

φ(.)φ(0)
−1/2

we may and hence do assume that φ(0) = I.
Inserting B = 0 into (2) we obtain φ(A/2) =

√
φ(A). We next have

I = φ(0) = φ(A)#φ(−A).

It requires easy computation to deduce from this equality that φ(−A) = φ(A)−1.
Setting T = (A+ (−B))/2 we infer

φ(T ) = φ(−B)#φ(A) = φ(B)−1#φ(A)

= φ(B)−1/2(φ(B)1/2φ(A)φ(B)1/2)1/2φ(B)−1/2.

Multiplying both sides by φ(B)1/2 and taking square, we deduce

φ(B)1/2φ(T )φ(B)φ(T )φ(B)1/2 = φ(B)1/2φ(A)φ(B)1/2.

Again, multiplying both sides by φ(B)−1/2 we obtain φ(T )φ(B)φ(T ) = φ(A) =
= φ(2T +B). It follows that

φ(T )φ(B)φ(T ) = φ(2T +B)

for every B, T ∈ S(H). Since φ(T )1/2 = φ(T/2), we infer

φ(T )1/2φ(B)φ(T )1/2 = φ(T +B) = φ(B + T ) = φ(B)1/2φ(T )φ(B)1/2.

We learn from [2, Corollary 3] that for any C,D ∈ P(H) we have C1/2DC1/2 =
= D1/2CD1/2 if and only if CD = DC. Therefore, it follows that the range
of φ is commutative. Let us now identify the operators in P(H) with n × n
matrices, where n = dimH. By its commutativity, the range of φ is simul-
taneously diagonisable by some unitary matrix U . Considering the transfor-
mation U∗φ(.)U we may and do assume that φ(A) = diag[φ1(A), . . . , φn(A)]
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(A ∈ S(H)), where φi maps S(H) into the set of all positive real numbers and
satisfies φi((A+B)/2) =

√
φi(A)φi(B) for every A,B ∈ S(H) and i = 1, . . . , n.

Using continuity and φ(0) = I, it is easy to see that log φi is a linear functional
on S(H). Therefore, for every i = 1, . . . , n we have Ji ∈ S(H) such that
log(φi(A)) = tr[AJi] implying φi(A) = exp(tr[AJi]) for all A ∈ S(H). Conse-
quently, we obtain

φ(A) = diag[exp(tr[AJ1]), . . . , exp(tr[AHn])]

for all A ∈ S(H), and the proof can be completed in an easy way. �

Remark 2. As for the case dimH = ∞, we note that for any T ∈ P(H),
any collection P1, . . . , Pn of mutually orthogonal projections with sum I and
any collection J1, . . . , Jn of self-adjoint trace-class operators on H, the formula

(3) φ(A) = T

( n∑
i=1

(exp(tr[AJi]))Pi

)
T, A ∈ S(H)

defines a continuous map from S(H) to P(H) which transforms arithmetic
mean to geometric mean. With some more effort and refining the continuity
assumption on the transformations, one could obtain a result which would
show that a ”continuous analogue” of the formula (3) (i.e., with integral in the
place of the sum) describes the general form of continuous maps from S(H) to
P(H) that transform arithmetic mean to geometric mean. However, we do not
present the precise details here.
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Abstract. In this paper we show that there is no simultaneous number
system of Gaussian integers with the canonical digit set. Furthermore we
give the construction of a new digit set by which simultaneous number
systems of Gaussian integers exist.

1. Introduction

K.-H. Indlekofer, I. Kátai and P. Racskó examined in [1], for what N1, N2

will (−N1,−N2,Ac) be a simultaneous number system, where 2 ≤ N1 < N2 are
rational integers and Ac = {0, 1, . . . , |N1||N2| − 1}. The triple (−N1,−N2,Ac)
is called a simultaneous number system if there exist aj ∈ Ac (j = 0, 1, . . . , n)
for all z1, z2 rational integers so that

z1 =

n∑
j=0

aj(−N1)
j , z2 =

n∑
j=0

aj(−N2)
j .

In the first part of this article we examine the case of Gaussian integers with
the canonical digit set (there exist no Z1, Z2 ∈ Z[i] for which (Z1, Z2,Ac) is a
simultaneous number system), and in the second part we give the construction
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of a new digit set by which simultaneous number systems of Gaussian integers
exist.

Let Z1 and Z2 be Gaussian integers and let A be a digit set. The triple
(Z1, Z2,A) is called a simultaneous number system if there exist aj ∈ A (j =
= 0, 1, . . . , n) for all z1, z2 ∈ Z[i] so that:

(1.1) z1 =
n∑

j=0

ajZ
j
1 , z2 =

n∑
j=0

ajZ
j
2 .

Statement 1.1. If (Z1, Z2,A) is a simultaneous number system, then
Z1 − Z2 is unit.

Proof. Let (z1, z2) be an ordered pair which can be written in the form
(1.1). We get:

z1 − z2 =
n∑

j=1

aj

(
Zj

1 − Zj

2

)
.

It is easy to see, that Z1−Z2 is the divisor of all terms of the right hand side of
the equation, so it is the divisor of the left hand side of the equation as well. If
(Z1, Z2,A) is a simultaneous number system, then every ordered pair (z1, z2)
can be written in the form (1.1). This holds for (z1, z1 − 1) as well. Hence we
get that Z1 − Z2 is the divisor of 1, so it is unit. �

Corollary 1.1. If (Z1, Z2,A) is a simultaneous number system of Gaus-
sian integers, then Z1 − Z2 ∈ {±1,±i}.

2. The case of canonical digit set

Let Ac = {0, 1, . . . , |Z1|
2|Z2|

2 − 1}. If we would like (Z1, Z2,Ac) to be a
simultaneous number system, then Z1 and Z2 must be of the form A ± i.
Otherwise not every ordered pair (x, y) could be written in the form (1.1).
Considering the previous Corollary we get that (Z1, Z2,Ac) can be a simulta-
neous number system, only if Z1 = A ± i and Z2 = Z1 ± 1. Similarly to the
case of number systems of the Gaussian integers we get that (Z1, Z2,Ac) is a
simultaneous number system if and only if (Z1, Z2,Ac) is a simultaneous num-
ber system as well. Furthermore (Z1, Z2,Ac) is a simultaneous number system
if and only if (Z2, Z1,Ac) is a simultaneous number system as well. Therefore
it is enough to examine the case Z1 = A+ i and Z2 = Z1 − 1.

Theorem 2.1. (Z1, Z2,Ac) is not a simultaneous number system.
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Statement 2.1. Let Z1 = −A + i, A ∈ Z, A > 0, Z2 = Z1 − 1, and
Ac = {0, 1, . . . , |Z1|

2|Z2|
2−1}. Then (Z1, Z2,Ac) is not a simultaneous number

system.

Proof of Statement 2.1. We will show that there are nontrivial periodic
elements. If a = (b, c) ∈ Z[i] × Z[i] then let d(a) ∈ Ac be such that d(a) ≡

≡ b (mod Z1) and d(a) ≡ c (mod Z2). Furthermore let J(a) =
(

b−d(a)
Z1

, c−d(a)
Z2

)
.

Let B = {1, 3, 4, 5, 6, 10, 11, 16}. If A ∈ B then the structure of periodic
elements of (−A + i,−A − 1 + i,Ac) or at least the values of transitions are
different from the other cases.

If A = 1 then let p0 = (0, 0) and

p1 = (2, 1), p2 = (2 + 2i, 2 + i), p3 = (3, 1),

p4 = (−1− i, 0), p5 = (i, 0), p6 = (3 + 2i, 2 + i),

p7 = (4 + 2i, 3 + i), p8 = (−1− 3i,−1− i), p9 = (3i, 1 + i),

p10 = (−1, 0), p11 = (3 + 3i, 2 + i), p12 = (2− i, 1),

p13 = (2 + 3i, 2 + i), p14 = (5 + 2i, 3 + i), p15 = (1− i, 1),

p16 = (2 + 4i, 2 + i), p17 = (3− i, 1), p18 = (1 + 2i, 2 + i),

p19 = (5 + 3i, 3 + i), p20 = (−1− 4i,−1− i), p21 = (2 + 6i, 3 + 2i),

p22 = (3− 3i,−i), p23 = (1 + 4i, 3 + 2i), p24 = (5 + i, 2),

p25 = (−1− 2i, 0), p26 = (3 + 4i, 2 + i), p27 = (5 + i, 3 + i),

p28 = (−2− 3i,−1− i), p29 = (3 + 6i, 3 + 2i), p30 = (5− i, 2),

p31 = (−2− i, 0), p32 = (6 + 2i, 3 + i), p33 = (−2− 4i,−1− i),

p34 = (4i, 1 + i), p35 = (2 + 4i, 3 + 2i), p36 = (2− 2i,−i).

Then

J(p0) = p0, J(p1) = p2, J(p2) = p1, J(p3) = p4, J(p4) = p5,

J(p5) = p6, J(p6) = p7, J(p7) = p8, J(p8) = p9, J(p9) = p3,

J(p10) = p11, J(p11) = p12, J(p12) = p10, J(p13) = p14, J(p14) = p15,

J(p15) = p13, J(p16) = p17, J(p17) = p18, J(p18) = p19, J(p19) = p20,

J(p20) = p21, J(p21) = p22, J(p22) = p23, J(p23) = p24, J(p24) = p25,

J(p25) = p16, J(p26) = p27, J(p27) = p28, J(p28) = p29, J(p29) = p30,

J(p30) = p31, J(p31) = p26, J(p32) = p33, J(p33) = p34, J(p34) = p32,

J(p35) = p36, J(p36) = p35,
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furthermore d(p0) = 0 and

d(p1) = 6, d(p2) = 4, d(p3) = 1, d(p4) = 0, d(p5) = 5, d(p6) = 9,

d(p7) = 0, d(p8) = 2, d(p9) = 3, d(p10) = 5, d(p11) = 4, d(p12) = 1,

d(p13) = 9, d(p14) = 5, d(p15) = 6, d(p16) = 4, d(p17) = 6, d(p18) = 9,

d(p19) = 0, d(p20) = 7, d(p21) = 2, d(p22) = 8, d(p23) = 7, d(p24) = 2,

d(p25) = 5, d(p26) = 9, d(p27) = 0, d(p28) = 7, d(p29) = 7, d(p30) = 2,

d(p31) = 5, d(p32) = 0, d(p33) = 2, d(p34) = 8, d(p35) = 2, d(p36) = 8.

The structure of periodic elements is shown in Figure 1.

p0
p1 p2

p3

p4

p5

p6p7

p8

p9

p10

p11p12

p13

p14p15

p16
p17

p18

p19

p20
p21

p22

p23

p24

p25 p26

p27

p28

p29

p30

p31

p32

p33p34

p35 p36

Figure 1. The structure of periodic elements of (−1 + i,−2 + i,Ac)

If A = 3 then let p0 = (0, 0) and

p1 = (9 + 4i, 7 + 2i), p2 = (43 + 13i, 34 + 8i), p3 = (−2− 5i,−2i),

p4 = (13 + 6i, 10 + 3i), p5 = (39 + 11i, 31 + 7i) p6 = (2− 3i, 3− i),

p7 = (47 + 15i, 37 + 9i), p8 = (−6− 7i,−3− 3i), p9 = (17 + 8i, 13 + 4i),

p10 = (35 + 9i, 28 + 6i), p11 = (6− i, 6), p12 = (5 + 2i, 4 + i).

Then

J(p0) = p0, J(p1) = p2, J(p2) = p3, J(p3) = p4, J(p4) = p5,

J(p5) = p6 J(p6) = p1, J(p7) = p8, J(p8) = p9, J(p9) = p10,

J(p10) = p11, J(p11) = p12, J(p12) = p7,
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furthermore d(p0) = 0 and

d(p1) = 151, d(p2) = 32, d(p3) = 43, d(p4) = 141, d(p5) = 42,

d(p6) = 33, d(p7) = 22, d(p8) = 53, d(p9) = 131, d(p10) = 52,

d(p11) = 23, d(p12) = 161.

The structure of periodic elements is shown in Figure 2.

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

Figure 2. The structure of periodic elements of (−3 + i,−4 + i,Ac)

If A = 4 then let

p0 = (0, 0), p1 = (55 + 14i, 45 + 9i), p2 =(58 + 11i, 49 + 8i),

p3 = (63 + 13i, 53 + 9i), p4 = (9 − i, 9).

Then

J(p0) = p0, J(p1) = p2, J(p2) = p3, J(p3) = p4, J(p4) = p1,

furthermore

d(p0) = 0, d(p1) = 298, d(p2) = 323, d(p3) = 98, d(p4) = 243.

The structure of periodic elements is shown in Figure 3a.

If A = 5 then let

p0 = (0, 0), p1 = (65 + 13i, 55 + 9i), p2 = (73 + 12i, 63 + 9i),

p3 = (137 + 25i, 117 + 18i), p4 = (25, 24 + i).
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Then

J(p0) = p0, J(p1) = p2, J(p2) = p3, J(p3) = p4, J(p4) = p1,

furthermore

d(p0) = 0, d(p1) = 442, d(p2) = 783, d(p3) = 262, d(p4) = 363.

The structure of periodic elements is shown in Figure 3a.

If A = 6 then let

p0 = (0, 0), p1 = (91 + 13i, 80 + 10i),

p2 = (182 + 26i, 160 + 20i), p3 = (229 + 38i, 198+ 28i),

p4 = (44 + i, 42 + 2i), p5 = (139 + 25i, 119+ 18i),

p6 = (253 + 38i, 221 + 29i), p7 = (−28− 11i,−20− 7i).

Then

J(p0) = p0, J(p1) = p1, J(p2) = p2, J(p3) = p4,

J(p4) = p3, J(p5) = p6, J(p6) = p7, J(p7) = p5,

furthermore

d(p0) = 0, d(p1) = 650, d(p3) = 1300, d(p3) = 494,

d(p4) = 1456, d(p5) = 1695, d(p6) = 74, d(p7) = 831.

The structure of periodic elements is shown in Figure 3b.

p0p0 p1

p1

p2

p2

p3

p3

p4

p4

p5

p6p7

(a) A ∈ {4, 5} (b) A = 6

Figure 3. The structure of periodic elements of (−A+ i,−A− 1 + i,Ac)
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If A = 10 then let p0 = (0, 0) and

p1 = (439 + 45i, 399 + 37i), p2 = (375 + 33i, 345+ 28i),

p3 = (813 + 78i, 743 + 65i), p4 = (−32− 11i,−23− 8i).

Then

J(p0) = p0, J(p1) = p2, J(p2) = p3, J(p3) = p4, J(p4) = p1,

furthermore

d(p0) = 0, d(p1) = 4222, d(p2) = 8583, d(p3) = 482, d(p4) = 4403.

The structure of periodic elements is shown in Figure 4a.

If A = 11 then let

p0 = (0, 0), p1 = (408 + 34i, 377+ 29i),

p2 = (816 + 68i, 754 + 58i), p3 = (1224 + 102i, 1131+ 87i),

p4 = (1222 + 112i, 1121+ 94i), p5 = (2− 10i, 10− 7i).

Then

J(p0) = p0, J(p1) = p1, J(p2) = p2, J(p3) = p3, J(p4) = p5, J(p5) = p4,

furthermore

d(p0) = 0, d(p1) = 4930, d(p2) = 9860,

d(p3) = 14790, d(p4) = 1234, d(p5) = 13556.

The structure of periodic elements is shown in Figure 4b.

If A = 16 then let p0 = (0, 0) and

p1 = (1105 + 65i, 1044+ 58i), p2 = (2210 + 130i, 2088+ 116i),

p3 = (3315 + 195i, 3132+ 174i), p4 = (3586 + 226i, 3375+ 200i),

p5 = (4370 + 259i, 4127+ 231i), p6 = (−221− 30i,−194− 25i).

Then

J(p0) = p0, J(p1) = p1, J(p2) = p2, J(p3) = p3,

J(p4) = p5, J(p5) = p6, J(p6) = p4,

furthermore

d(p0) = 0, d(p1) = 18850, d(p2) = 37700, d(p3) = 56550,

d(p4) = 73765, d(p5) = 804, d(p6) = 57381.

The structure of periodic elements is shown in Figure 4c.
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(a) A = 10 (b) A = 11 (c) A = 16

Figure 4. The structure of periodic elements of (−A+ i,−A− 1 + i,Ac)

We can get the following connections with interpolation from examining a
few examples:

Case 1. A = 5k + 1. Let

a11 = 25k3 + 40k2 + 22k + 4, b11 = 5k2 + 6k + 2,

a21 = 25k3 + 35k2 + 17k + 3, b21 = 5k2 + 4k + 1,

a12 = 50k3 + 80k2 + 44k + 8, b12 = 10k2 + 12k + 4,

a22 = 50k3 + 70k2 + 34k + 6, b22 = 10k2 + 8k + 2,

a13 = 75k3 + 120k2 + 66k + 12, b13 = 15k2 + 18k + 6,

a23 = 75k3 + 105k2 + 51k + 9, b23 = 15k2 + 12k + 3,

a14 = 100k3 + 160k2 + 88k + 16, b14 = 20k2 + 24k + 8,

a24 = 100k3 + 140k2 + 68k + 12, b24 = 20k2 + 16k + 4,

and

p1 = (a11 + b11i, a21 + b21i), p2 = (a12 + b12i, a22 + b22i),

p3 = (a13 + b13i, a23 + b23i), p4 = (a14 + b14i, a24 + b24i).

Then

J(p1) = p1, J(p2) = p2, J(p3) = p3, J(p4) = p4,
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furthermore

d(p1) =, 125k4 + 250k3 + 195k2 + 70k + 10,

d(p2) = 250k4 + 500k3 + 390k2 + 140k + 20,

d(p3) = 375k4 + 750k3 + 585k2 + 210k + 30,

d(p4) = 500k4 + 1000k3 + 780k2 + 280k + 40.

Case 2. A = 5k + 2. In this case A is not a suitable digit set since
((5k + 2)2 + 1, (5k + 3)2 + 1) = 5.

Case 3. A = 5k + 3. Let

a11 = 25k3 + 115k2 + 132k + 46, b11 = 5k2 + 16k + 10,

a21 = 25k3 + 110k2 + 117k + 38, b21 = 5k2 + 14k + 7,

a12 = 100k3 + 235k2 + 198k + 58, b12 = 20k2 + 34k + 16,

a22 = 100k3 + 215k2 + 168k + 47, b22 = 20k2 + 26k + 10,

a13 = 50k3 + 155k2 + 154k + 50, b13 = 10k2 + 22k + 12,

a23 = 50k3 + 145k2 + 134k + 41, b23 = 10k2 + 18k + 8,

a14 = 75k3 + 195k2 + 176k + 54, b14 = 15k2 + 28k + 14,

a24 = 75k3 + 180k2 + 151k + 44, b24 = 15k2 + 22k + 9,

and

p1 = (a11 + b11i, a21 + b21i), p2 = (a12 + b12i, a22 + b22i),

p3 = (a13 + b13i, a23 + b23i), p4 = (a14 + b14i, a24 + b24i).

Then

J(p1) = p2, J(p2) = p1, J(p3) = p4, J(p4) = p3,

furthermore

d(p1) = 500k4 + 1500k3 + 1830k2 + 1050k+ 236,

d(p2) = 125k4 + 750k3 + 1245k2 + 840k + 206,

d(p3) = 375k4 + 1250k3 + 1635k2 + 980k + 226,

d(p4) = 250k4 + 1000k3 + 1440k2 + 910k + 216.
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Case 4. A = 5k + 4. Let

a11 = 25k3 + 115k2 + 162k + 72, b11 = 5k2 + 16k + 12,

a21 = 25k3 + 110k2 + 147k + 62, b21 = 5k2 + 14k + 9,

a12 = 50k3 + 155k2 + 169k + 64, b12 = 10k2 + 22k + 13,

a22 = 50k3 + 145k2 + 149k + 54, b22 = 10k2 + 18k + 9,

a13 = 100k3 + 310k2 + 323k + 113, b13 = 20k2 + 44k + 25,

a23 = 100k3 + 290k2 + 283k + 94, b23 = 20k2 + 36k + 17,

a14 = 75k3 + 270k2 + 316k + 121, b14 = 15k2 + 38k + 24,

a24 = 75k3 + 255k2 + 281k + 102, b24 = 15k2 + 32k + 17,

furthermore

p1 = (a11 + b11i, a21 + b21i), p2 = (a12 + b12i, a22 + b22i),

p3 = (a13 + b13i, a23 + b23i), p4 = (a14 + b14i, a24 + b24i).

Then

J(p1) = p2, J(p2) = p3, J(p3) = p4, J(p4) = p1,

furthermore

d(p1) = 250k4 + 1000k3 + 1590k2 + 1180k+ 341,

d(p2) = 500k4 + 2000k3 + 3030k2 + 2070k+ 541,

d(p3) = 375k4 + 1750k3 + 2985k2 + 2230k+ 621,

d(p4) = 125k4 + 750k3 + 1545k2 + 1340k + 421.

Case 5. A = 5k. Let

a11 = 25k3 + 40k2 + 22k + 3, b11 = 5k2 + 6k + 2,

a21 = 25k3 + 35k2 + 17k + 2, b21 = 5k2 + 4k + 1,

a12 = 75k3 + 45k2 + 16k + 2, b12 = 15k2 + 8k + 2,

a22 = 75k3 + 30k2 + 11k + 2, b22 = 15k2 + 2k + 1,

a13 = 100k3 + 85k2 + 23k + 2, b13 = 20k2 + 14k + 3,

a23 = 100k3 + 65k2 + 13k + 2, b23 = 20k2 + 6k + 1,

a14 = 50k3 + 80k2 + 29k + 3, b14 = 10k2 + 12k + 3,

a24 = 50k3 + 70k2 + 19k + 2, b24 = 10k2 + 8k + 1,
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furthermore

p1 =(a11 + b11i, a21 + b21i), p2 =(a12 + b12i, a22 + b22i),

p3 =(a13 + b13i, a23 + b23i), p4 =(a14 + b14i, a24 + b24i).

Then

J(p1) = p2, J(p2) = p3, J(p3) = p4, J(p4) = p1,

furthermore

d(p1) = 375k4 + 250k3 + 135k2 + 40k + 5,

d(p2) = 500k4 + 500k3 + 180k2 + 40k + 5,

d(p3) = 250k4 + 500k3 + 240k2 + 50k + 5,

d(p4) = 125k4 + 250k3 + 195k2 + 50k + 5.

The statements can be verified by simple calculations.

The structure of periodic elements is shown in Figure 5. �
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(a) A ≡ 1 (mod 5) (b) A ≡ 3 (mod 5) (c) A ≡ 0 or 4 (mod 5)

Figure 5. The structure of periodic elements of (−A+ i,−A− 1 + i,Ac),
if A �∈ B
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Conjecture 2.1. There are no periodic elements other than the enumer-
ated ones.

If the conjecture is true, then if A �∈ B, then the number of nontrivial periodic
elements will be 4 and their structure depends on the remainder of A divided
by 5. Namely:

• 4 pieces of loops

• 2 pieces of circles with the length of 2

• 1 piece of circle with the length of 4

Statement 2.2. Let now Z1 = A+ i, A ∈ Z, A > 0, Z2 = Z1 + 1, and
Ac = {0, 1, . . . , |Z1|

2|Z2|
2−1}. Then (Z1, Z2,Ac) is not a simultaneous number

system.

Proof of Statement 2.2. If A ≡ 2 (mod 5) then Ac is not a suitable digit
set. Otherwise there would exist nontrivial periodic elements. Let

p = (−A3 +A2 −A+ 1 +A2i+ i,−A3 + 2A2 − 2A+ k2i− 2Ai+ 2i).

We get with simple calculations that in this case J(p) = p. �

Proof of Theorem 2.1. Theorem 2.1 follows from Statement 2.1 and
Statement 2.2 immediately. �

We proved that (Z1, Z2,Ac) is not a simultaneous number system for all
Z1, Z2 ∈ Z[i].

3. The case of the new digit set

With the help of K-type digit sets one can define such digit set by which
simultaneous number systems of Gaussian integers exist.

Definition 3.1. Let Z = a + bi and t = |Z|2. Then let E
(ε,δ)
α be the sets

of those d = k + li, k, l ∈ Z for which

dZ = (k + li)(a− bi) = (ka+ bl) + (la− kb)i = r + si

satisfy the following conditions:
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if (ε, δ) = (1, 1), then r, s ∈ (−t/2, t/2],

if (ε, δ) = (−1,−1), then r, s ∈ [−t/2, t/2),

if (ε, δ) = (−1, 1), then r ∈ [−t/2, t/2), s ∈ (−t/2, t/2]

if (ε, δ) = (1,−1), then r ∈ (−t/2, t/2], s ∈ [−t/2, t/2).

We call the above constructed coefficient sets K-type digit sets.

The K-type digit set was used by G. Steidl in [2], by I. Kátai in [3] and by
G. Farkas in [4], [5], [6], [7] and [8]. Now we use them to construct a new digit
set by which simultaneous number systems of Gaussian integers exist.

Let A1 and A2 be K-type digit sets belonging to given Z1, Z2 ∈ Z[i] Gaus-
sian integers. Define A in the following way:

A :=
⋃

aj∈A2

(A1 + ajZ1).

Theorem 3.1. If Z1, Z2 ∈ Z[i] are such, that Z2 = Z1 + ε, where ε ∈

∈ {±1,±i}, A is as defined above and |Z1| is large enough, then (Z1, Z2,A) is
a simultaneous number system.

Remarks.

max
a∈A1

|a| ≤
|Z1|
√
2
, max

a∈A2

|a| ≤
|Z1|+ 1

√
2

.

M := max
a∈A

|a| ≤
|Z1|
√
2

+
|Z1|+ 1

√
2

|Z1| =
|Z1|
√
2
(|Z1|+ 2).

Let L1 := M
|Z1|−1 , L2 := M

|Z2|−1 and L := max(L1, L2). Then

L ≤

|Z1|√
2
(|Z1|+ 2)

|Z1| − 2
.

Lemma 3.1. If (z1, z2) is a periodic element, then |z1| ≤ L1 and |z2| ≤ L2.

Lemma 3.2. If a ∈ Z[i], |a| ≤ L, then a ∈ A.

Lemma 3.3. If z1 �= z2, |z1|, |z2| ≤ L and J(z1, z2) = (w1, w2), then |w1−

−w2| < |z1 − z2|.

Lemma 3.4. For every z1, z2 ∈ Z[i] there exists a ∈ A such that z1 ≡

≡ a (Z1) and z2 ≡ a (Z2).

Proof of Lemma 3.1. The proof is similar to the proof for previous
structures. �
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Proof of Lemma 3.2. A2 is K-type digit set. Therefore ∀a ∈ Z[i], if |a| <

|Z2|
2 then a ∈ A2. From the definition of A we get that if |a| <

(
|Z2|
2 − 1

)
|Z1|

then a ∈ A. Consequently we have to solve the following inequality:

L <

(
|Z2|

2
− 1

)
|Z1|,

|Z1|√
2
(|Z1|+ 2)

|Z1| − 2
<

(
|Z2|

2
− 1

)
|Z1|,

|Z1|(|Z1|+ 2)
√
2(|Z1| − 2)

<
|Z1| − 3

2
|Z1|, 2|Z1|+ 4 <

√
2(|Z1|

2 − 5|Z1|+ 6),

0 < |Z1|
2 − 7|Z1|+ 2,

which is true, if |Z1| >
7
2 + 1

2

√
41 ≈ 6, 7. �

Proof of Lemma 3.3.∣∣∣∣∣z1 − a

Z1
−

z2 − a

Z2

∣∣∣∣∣ =
∣∣∣∣∣z1 − a

Z1
−

z2 − a

Z1
+

z2 − a

Z1
−

z2 − a

Z1 + ε

∣∣∣∣∣ ≤
≤

|(z1 − a)− (z2 − a)|

|Z1|
+

|ε(z2 − a)|

|Z1(Z1 + ε)|
=

|(z1 − a)− (z2 − a)|

|Z1|
+

|z2 − a|

|Z1||Z1 + ε|
≤

≤
|(z1 − a)− (z2 − a)|

|Z1|
+

L+M

|Z1||Z1 + ε|
.

Therefore we have to prove that if |Z1| is large enough, then

|(z1 − a)− (z2 − a)|

|Z1|
+

L+M

|Z1||Z1 + ε|
≤ |z1 − z2| = |(z1 − a)− (z2 − a)|,

or equivalently

L+M

|Z1||Z1 + ε|
≤ |(z1 − a)− (z2 − a)|

(
1−

1

|Z1|

)
.

For this it is enough to prove that

L+M

|Z1||Z1 + ε|
≤ 1−

1

|Z1|
.

Multiplying by |Z1| we get

L+M

|Z1| − 1
≤ |Z1| − 1,

L+M ≤ (|Z1| − 1)2.
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Substituting L and M by their previous estimates we obtain

|Z1|√
2
(|Z1|+ 2)

|Z1| − 2
+

|Z1|
√
2
(|Z1|+ 2) ≤ (|Z1| − 1)2,

|Z1|
√
2
(|Z1|+ 2)

(
1 +

1

|Z1| − 2

)
≤ (|Z1| − 1)2.

Dividing by |Z1|
2 leads to

1
√
2

(
1 +

2

|Z1|

)(
1 +

1

|Z1| − 2

)
≤

(
1−

1

|Z1|

)
.

If |Z1| tends to infinity then the left hand side of the inequality tends to 1√
2

and the right hand side tends to 1. Then the inequality holds if |Z1| is large

enough,. The inequality is true, if |Z1| > 4 + 5
2

√
2 + 1

2

√
98 + 72

√
2 ≈ 14, 6. �

Proof of Lemma 3.4. Let a1 ∈ A1 and a2 ∈ A2 be such that z1 ≡ a1 (Z1)
and a2 ≡ a1−z2

ε
(Z2) hold. Then a1 + a2Z1 ∈ A will be a suitable digit. �

Proof of Theorem 3.1. The theorem follows from the lemmas immedi-
ately. �
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[8] Farkas, G. and A. Kovács Digital expansion in Q(
√
2), Annales Univ.

Sci. Budapest., Sect. Comp., 22 (2003), 83–94.

G. Nagy
Department of Computer Algebra
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SYMMETRIC DEVIATIONS AND

DISTANCE MEASURES

Wolfgang Sander (Braunschweig, Germany)

Dedicated to Professor Antal Járai on his 60th birthday

Abstract. In this paper we characterize measurable information measures
depending upon two probability distributions in a unified manner in order
to get most of the existing information measures. Moreover it turns out
that our characterization contains new, unexpected information measures.

1. Introduction

In this paper we investigate information measures on the open domain de-
pending upon two probability distributions which are also called deviations (or
similarity, affinity or divergence measures). Thus a deviation is a sequence
(Mn) of functions, where

Mn : Γ2
n → R, n ∈ N, n ≥ 2.

Here

Γn =

{
P = (p1, . . . , pn)

∣∣∣ pi ∈ I,

n∑
i=1

pi = 1

}
(1.1)

2000 Mathematics Subject Classification: Primary 94A17, Secondary 39B52.

Key words and phrases: Information measures, open domain, sum form, weighted additivity,
polynomially additivity.
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denotes the set of all discrete n-ary complete positive probability distributions
and I denotes the open interval (0,1).

In Shore and Johnson [11] it is shown that each deviation (Mn) which
satisfies the four desirable conditions of uniqueness, invariance, system inde-
pendency and subset independency has a sum form representation

Mn(P,Q) =
n∑

i=1

f(pi, qi)(1.2)

for some generating function f : I2 → R. This result underlines the fact that
each known deviation has a sum form, and it is thus natural to assume that a
deviation has the sum form property (1.2) for some generating function f .

Many known deviations have a symmetric generating function f that is,
f(p, q) = f(q, p) for all p, q ∈ I. If a deviation (Mn) is not symmetric then going
over to M ′

n(P,Q) = Mn(P,Q) + Mn(Q,P ) means that M ′
n has a symmetric

generating function f ′(p, q) = f(p, q) + f(q, p).

The problem of how to characterize all sum form deviations, that is to
find some natural conditions which imply the explicite form of the generating
function, arises.

In Ebanks et al [3] (see chapter 5) two results were proven for information
measures (Mn) depending upon two probability distributions P,Q ∈ Γn satisfy-
ing a sufficient “fullness” of the range of (Mn) (the range {Mn(Γ

2
n)|n = 2, 3, ...}

has infinite cardinality):

1. For P,Q ∈ Γn, U, V ∈ Γm we introduce P ∗ U,Q ∗ U,P ∗ V,Q ∗ V ∈ Γnm,
where

(P ∗ U,Q ∗ V ) =

= ((p1u1, ..., p1um, ..., pnu1, ..., pnum), (q1v1, ..., q1vm, ..., qnv1, ..., qnvm))).

Now, if (Mn) has the sum form property with some generating function f
and if Mnm(P ∗U,Q∗V ) = h(Mn(P,Q),Mm(U, V )) for some polynomial
h : R2 → R and for all m,n ≥ 2, then it is shown that h is a symmetric
polynomial of degree at most one so that

(1.3)
Mnm(P ∗ U,Q ∗ V ) =

= Mn(P,Q) +Mm(U, V ) + λMn(P,Q)Mm(U, V )

for some λ ∈ R.

2. If (Mn) has the sum form property with some generating function f , and
there are distributions P ′, Q′ ∈ Γn, U

′, V ′ ∈ Γm such that In(P
′, Q′) �= 0,
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respectively Im(U ′, V ′) �= 0 and

(1.4)
Mnm(P ∗ U,Q ∗ V ) =

= A(U, V )Mn(P,Q) +B(P,Q)Mm(U, V )

for some “weights” A and B, then A and B have the sum form

A(U, V ) =
m∑
j=1

M(uj , vj) , B(P,Q) =
n∑

i=1

M ′(pi, qi)(1.5)

for some generating multiplicative functions M,M ′ : R2
+ → R .

We remark that in Ebanks et al [3] the results in 1. and 2. were proven
for information measures depending upon k probability distributions, but the
special case k = 2 with the notation (P,Q) ∗ (U, V ) = (P ∗ U,Q ∗ V ) leads
exactly to the above (nontrivial) results given in (1.3)–(1.5).

We now assume that the generating function f is symmetric in (1.3) and
(1.4) and that M = M ′ is symmetric so that M(p, q) = M ′(p, q) = M1(p)M1(q)
for some multiplicative function M1 : I → R (since a multiplicative function of
two variables is the product of two multiplicative functions in one variable).

Then we form the expression Mnm(P ∗ U,Q ∗ V ) +Mnm(P ∗ V,Q ∗ U) to
get

Mnm(P ∗ U,Q ∗ V ) +Mnm(P ∗ V,Q ∗ U) =

= 2Mn(P,Q) + 2Mm(U, V ) + λ′Mn(P,Q)Mm(U, V )(1.6)

and

Mnm(P ∗ U,Q ∗ V ) +Mnm(P ∗ V,Q ∗ U) =

= 2A(U, V ) ·Mn(P,Q) + 2A(P,Q) ·Mm(U, V ),(1.7)

from (1.3) and (1.4) respectively, where λ′ = 2λ and where

(1.8) 2A(P,Q) =

n∑
i=1

2M1(pi)M1(qi) , 2A(U, V ) =

m∑
j=1

2M1(uj)M1(vj).

Thus a common generalization of the deviations given in (1.6) and (1.7) leads
to the following class of deviations:

Definition 1.1. A deviation (Mn) is a symmetrically weighted compositive
sum form deviation of additive-multiplicative type if (Mn) satisfies

(1.9)
Mnm(P ∗ U,Q ∗ V ) +Mnm(P ∗ V,Q ∗ U) =

= Gm(U, V )Mn(P,Q) +Gn(P,Q)Mm(U, V ) + λMn(P,Q)Mm(U, V ),
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for some λ ∈ R, for all m,n ≥ 2 and for all P,Q ∈ Γn, U, V ∈ Γm with
P ∗ U,Q ∗ U,P ∗ V,Q ∗ V ∈ Γnm, where Mn and Gn have the sum form

(1.10) Mn(P,Q) =

n∑
i=1

f(pi, qi), Gn(P,Q) =

n∑
i=1

g(pi, qi), P,Q ∈ Γn

for some symmetric functions f, g : I2 → R, and where g satisfies

g(pu, qv) + g(pv, qu) = g(p, q)g(u, v) , p, q, u, v ∈ I.(1.11)

We say that (Mn) is measurable if f and g are measurable in each variable.
Moreover, every symmetric deviation (Mn) satisfying Mn(P, P ) = 0 is called a
distance measure.

Note that (1.9) and (1.10) with g(p, q) = p+ q and g(p, q) = 2M1(p)M1(q)
lead to (1.6) and (1.7), respectively, and that both functions g satisfy (1.11).

Thus the deviations (Mn) given by (1.9) and (1.10) satisfy the following
fundamental functional equation

(1.12)

n∑
i=1

m∑
j=1

[ f(piuj , qivj) + f(pivj , qiuj)−

−g(uj , vj)f(pi, qi)− g(pi, qi)f(uj , vj)− λf(pi, qi)f(uj , vj) ] = 0,

where g satisfies (1.11).

In this paper we will present the measurable solutions of (1.11) and (1.12),
generalizing the result in Chung et al [2] where the measurable solutions of
functional equation (1.6) were given.

Let us finally consider some examples in this introduction.

Kerridge’s inaccuracy Kn or the directed divergence Fn is given by

(1.13) Kn(P,Q) = −
n∑

i=1

pi log qi, Fn(P,Q) =

n∑
i=1

pi log
pi
qi

.

Note that Kn(P, P ) = Hn(P ) and Fn(P,Q) = Kn(P,Q) − Kn(P, P ), where
Hn is the well-known Shannon-entropy. Kn and Fn are indeed errors or devi-
ations due to using Q = (q1, . . . , qn) as an estimation of the true probability
distribution P = (p1, . . . , pn).

A 1-parametric generalization of (Fn) is given by (Fα
n ), the directed diver-

gence of degree α,

Fα
n (P,Q) =

⎧⎪⎨⎪⎩
Fn(P,Q) α = 1

1

2α−1 − 1

(
n∑

i=1

pαi q
1−α
i − 1

)
α ∈ R \ {1}.(1.14)
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We see immediately that limα→1 F
α
n = F 1

n = Fn. F
α
n is not symmetric in P

and Q, but Fα
n can be symmetrized by going over to

Jα
n (P,Q) = Fα

n (P,Q) + Fα
n (Q,P ) P,Q ∈ Γn(1.15)

so that we arrive at the J-divergence (Jα
n ) of degree α, α ∈ R , which satisfies

Jα
n (P,Q) = Jα

n (Q,P ). Again we have limα→1 J
α
n = J1

n (because of limα→1 F
α
n =

= F 1
n).

A further generalization of Jα
n is given by

(1.16) Lα,γ
n (P,Q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
21−α

n∑
i=1

(pαi − qαi ) log
pi
qi

α = γ

1

2α−1 − 2γ−1

n∑
i=1

(pαi − qαi )
(
qγ−α
i − pγ−α

i

)
α �= γ,

the J-divergence of degree (α, γ). We get Lα,1
n = Jα

n and limγ→αL
α,γ
n = Lα,α

n ,
therefore Lα,γ

n can be considered as a 2-parametric generalization of J1
n.

The sequences (Jα
n ) and (Lα,γ

n ) satisfy (1.9) and (1.10) indeed: In the first
case we choose λ = 2α−1 − 1 and g(p, q) = p + q and in the second case λ =
2α−1 − 2γ−1 and g(p, q) = pγ + qγ , respectively (and the obvious choices for f
(see (1.13) and (1.14)). Moreover, Lα,γ

n is a distance measure since Lα,γ
n (P, P ) =

= 0.

Note that for example (for λ �= 0 and γ = 2α)

(1.17)
22α−1 − 2α−1

λ
Lα,2α
n (P,Q) =

1

λ

n∑
i=1

(pαi − qαi )
2
=:

1

λ
Dα

n(P,Q),

i.e. for α = 1
2 we arrive at Jeffreys distance in Jeffreys [5].

In the following Lemma we finally cite for the convenience of the reader
Lemma 2 and Lemma 4 of Riedel and Sahoo [10] which are needed in the proof
of Lemma 2.1.

Lemma 1.2. (1) Let M : I2 → C be a given multiplicative function. The
function f : I2 → C satisfies the functional equation

f(pu, qv) + f(pv, qu) = 2M(uv)f(p, q) + 2M(pq)f(u, v)(1.18)

if and only if

f(, p, q) = M(p)M(q)
[
L(p) + L(q) + l(

p

q
.
p

q
)
]
,(1.19)
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where L : I → C is an arbitrary logarithmic map and l : I2 → C is a biloga-
rithmic function.

(2) Let M1,M2 : I → C be any two nonzero multiplicative maps with M1 �=
�= M2. Then the function f : I2 → C satisfies the functional equation

f(pu, qv) + f(pv, qu) = [M1(u)M2(v) +M1(v)M2(u)]f(p, q)+

+ [M1(p)M2(q) +M1(q)M2(p)]f(u, v)
(1.20)

if and only if

(1.21)
f(p, q) =

= M1(p)M2(q)[L1(p) + L2(q)] +M1(q)M2(p)[L1(q) + L2(p)],

where L1, L2 : I → C are logarithmic functions.

2. Symmetrically weighted compositive sum form deviations

In order to solve the functional equation (1.11) and (1.12) we first deter-
mine the general solution of (1.11) and the corresponding “functional equation
without the sums”

(2.1) f(pu, qv) + f(pv, qu) = g(u, v)f(p, q) + g(p, q)f(u, v) + λf(p, q)f(u, v)

for all p, q, u, v ∈ I.

Lemma 2.1. The functions f, g : I2 → R, f �= 0 satisfy (1.11) and (2.1)
for all p, q ∈ I if and only if for all p, q ∈ I:
in the case λ = 0

f(p, q) = M1(p)M2(q)[L1(p) + L2(q)] +M1(q)M2(p)[L1(q) + L2(p)],

g(p, q) = M1(p)M2(q) +M1(q)M2(p), M1 �= M2

(2.2)

or

f(p, q) = M(p)M(q)[L3(p) + L3(q) + l(p, p) + l(q, q)− 2l(p, q)],

g(p, q) = 2M(p)M(q);
(2.3)

and in the case λ �= 0

f(p, q) =
1

λ
([M3(p)M4(q) +M3(q)M4(p)]−

− [M5(p)M6(q) +M5(q)M6(p)]),

g(p, q) = M5(p)M6(q) +M5(q)M6(p),

(2.4)
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where c �= 0, M : R+ → R and Mi : R+ → C, 1 ≤ i ≤ 6 are multiplicative
functions, L1, L2, L3 : R+ → R are logarithmic functions and l : R+ → R
is a bilogarithmic function, i.e. l is logarithmic in both variables. Moreover,
M2i−1 and M2i are both real-valued or M2i is the complex conjugate of M2i−1,
i = 1, 2, 3.

Finally, if f and g are measurable then M,Mi, L and Li are measurable,
too.

Proof. We start with the case λ �= 0 in (2.1). By substituting

h(p, q) = g(p, q) + λf(p, q)

we obtain from (2.1) that

h(pu, qv) + h(pv, qu) = h(p, q)h(u, v),(2.5)

that is, g and h both satisfy (1.11).

Thus we get from the general solution of (1.11) (see Chung et al [2]) that

g(p, q) = M5(p)M6(q) +M5(q)M6(p) p, q ∈ I,

h(p, q) = M3(p)M4(q) +M3(q)M4(p) p, q ∈ I,(2.6)

where Mi : R+ → C, 3 ≤ i ≤ 6, M2i−1 and M2i are both real-valued or M2i is
the complex conjugate of M2i−1, i = 2, 3. Using now the substitution for h we
arrive at (2.4).

Now we treat the case λ = 0. Then we have to solve (1.11) and

f(pu, qv) + f(pv, qu) = g(u, v)f(p, q) + g(p, q)f(u, v).(2.7)

The idea is to extend f and g simultaneously to functions f̄ , ḡ : R+ → R,
where f̄ , ḡ satisfy (1.11) and (1.2), too. Then it is possible to solve (1.11) and
(2.7). It turns out that indeed it is only important to have the point (1,1) in
the domain of f and g : putting q = v = 1 in (1.11) and (2.7) we get

g(p, u) = g(p, 1)g(u, 1)− g(pu, 1),

f(p, u) = g(u, 1)f(p, 1) + g(p, 1)f(u, 1)− f(pu, 1),

respectively (so that it is sufficient to determine the functions p→ g(p, 1) and
p→ f(p, 1)).

Let us define

M : I → R by M(t) :=
1

2
g(t, t) , t ∈ I and(2.8)

ḡ : R+ → R , ḡ(p, q) =
g(tp, tq)

M(t)
, p, q ∈ R+(2.9)
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(here (2.9) means that for given p, q ∈ R+ there is t ∈ I such that (tp, tq) ∈ I2).
Then M is a multiplicative function which is different from zero everywhere.
Moreover ḡ is well-defined, is uniquely determined, is a continuation of g and
satisfies (1.11) on R2

+ (see Chung et al [2]).

Before we define f̄ we need to do some calculations first. Putting u = v = t
into (2.7) we obtain (with G(t) := g(t, t) = 2M(t) and F (t) := 1

2f(t, t))

2f(tp, tq) = g(t, t)f(p, q) + g(p, q)f(t, t) = G(t)f(p, q) + 2F (t)g(p, q)

or

f(tp, tq) = M(t)f(p, q) + F (t)g(p, q), p, q ∈ I.(2.10)

Substituting p = q = t and u = v = w into (2.7) we arrive at

F (tw) = F (t)M(w) +M(t)F (w), t, w ∈ I.

Then we get, defining L(t) := F (t)
M(t) and dividing the last equation by M(tw),

L(tw) = L(t) + L(w), t, w ∈ I.(2.11)

Thus L is logarithmic. We now define the continuation f̄ : R+ → R by

f̄(p, q) =
f(tp, tq)

M(t)
− L(t)ḡ(p, q), p, q ∈ R+ ,(2.12)

where for each p, q ∈ R+ we choose t ∈ I such that tp, tq ∈ I.

In order to show that f̄ is well-defined, we choose (for given p, q ∈ R+) t, w ∈
∈ I, t �= w such that tp, tq, wp, wq ∈ I. We have to prove that

f(tp, tq)

M(t)
− L(t)ḡ(p, q) =

f(wp,wq)

M(w)
− L(w)ḡ(p, q)

or, equivalently

M(w)f(tp, tq)− F (t)M(w)ḡ(p, q) = M(t)f(wp,wq)− F (w)M(t)ḡ(p, q),

M(w)f(tp, tq) + F (w)g(tp, tq) = M(t)f(wp,wq) + F (t)g(wp,wq).

But the last equation is equivalent with the obvious identity (see (2.10))

f(w(tp), w(tq)) = f(t(wp), t(wq)).

The function f̄ is indeed a continuation of f : Choose t = p ∈ I to get

f̄(p, q) =
f(p2, pq)

M(p)
− L(p)ḡ(p, q) =

=
1

M(p)
(M(p)f(p, q) + F (p)g(p, q))− F (p)

M(p)
ḡ(p, q) = f(p, q)

from (2.12) and (2.10) for q ∈ I
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We show that f̄ and ḡ satisfy (2.7) for all p, q ∈ R+. For p, q, u, v ∈ R+

choose t ∈ I such that tp, tq, tu, tv ∈ I. Using (2.10) and (2.7) we get (using
M(t2) = M(t)2 and L(t2) = 2L(t))

f̄(pu, qv) + f̄(pv, qu) =

=
f(tptu, tqtv)

M(t2)
− L(t2)ḡ(pu, qv) +

f(tptv, tqtu)

M(t2)
− L(t2)ḡ(pv, qu) =

= ḡ(u, v)(
f(tp, tq)

M(t)
− L(t)ḡ(p, q)) + ḡ(p, q)(

f(tu, tv)

M(t)
− L(t)ḡ(u, v)) =

= ḡ(u, v)f̄(p, q) + ḡ(p, q)f̄(u, v).

In order to prove, that f is uniquely determined, let us assume that
f̃ : R2

+ → R is an extension of f satisfying also (2.7) for all p, q, u, v ∈ R+.
Now choose for p, q ∈ R+ an element t ∈ I such that tp, tq ∈ I and put
u = v = t in (2.7). We get (since f̃ = f on I)

2f̃(tp, tq) = 2M(t)f̃(p, q) + 2f̃(t, t)g(p, q)

or, solving the last equation for f̃(p, q) we see that

f̃(p, q) =
f̃(tp, tq)

M(t)
− g(p, q)

F (t)

M(t)
=

f(tp, tq)

M(t)
− L(t)g(p, q) = f̄(p, q).

Simplifying the notation we don’t distinguish f and f̄ , and g and ḡ and
suppose that f satisfies (2.7) for all p, q, u, v ∈ R+ and assume that g has the
form

g(p, q) = M1(p)M2(q) +M1(q)M2(p), p, q ∈ R+ ,(2.13)

for some multiplicative functions M1,M2 : R+ → C+, where M1 and M2 are
both real-valued or M2 is the complex conjugate of M1.

Now we consider two cases: M1 �= M2 and M1 = M2 = M ′ in (2.13),
respectively.

In the first case we get the solution (2.2) from Lemma 4 in Riedel and Sahoo
[10] and in the second case we get the solution (2.3) from Lemma 2 in Riedel
and Sahoo [10] (in these Lemmas the domain of the functions f,M,M1,M2 is
(0, 1] or (0, 1]2 and the range is C, but the proofs can be taken over directly for
our domains and ranges).

Moreover the proofs of the two Lemmas show that the measurability of f
and g imply the measurability of the functions M,L,Li and Mi. �

Note that f and g are both symmetric although it was not supposed.
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Theorem 2.2. All measurable, symmetrically weighted compositive sum
form deviations (Mn) of additive-multiplicative type are given as follows:
in the case λ = 0 by

(2.14) Mn(P,Q) =

n∑
i=1

[pγi q
δ
i (a log pi + b log qi) + pδi q

γ
i (a log qi + b log pi)]

or

(2.15) Mn(P,Q) =

n∑
i=1

pρi q
ρ
i

[
c log(piqi) + d

(
log

pi
qi

)2
]
,

and in the case λ �= 0 by

(2.16) Mn(P,Q) = − 1

λ

n∑
i=1

(
pγi q

δ
i + pδi q

γ
i

)
or

(2.17) Mn(P,Q) = − 1

λ

n∑
i=1

2pρi q
ρ
i cos

(
σ log

pi
qi

)
or

(2.18) Mn(P,Q) =
1

λ

n∑
i=1

[(
pαi q

β
i + pβi q

α
i

)
−
(
pγi q

δ
i + pδi q

γ
i

)]
or

(2.19) Mn(P,Q) =
1

λ

n∑
i=1

[
2pρi q

ρ
i cos

(
σ log

pi
qi

)
−
(
pγi q

δ
i + pδi q

γ
i

)]
,

where a, b, c, d, α, β, γ, δ, ρ, σ are arbitrary real constants with α �= β and γ �= δ.

Proof. We start from the fundamental equation (1.12) and substitute

h(p, q) = g(p, q) + λf(p, q)(2.20)

in the case λ �= 0 into (1.12). Then (using (2.5)) equation (1.12) turns into∑n
j=1 F (uj , vj) = 0 for all U, V ∈ Γm and for all m,n ≥ 2 where for fixed

P,Q ∈ Γn

F (u, v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n∑
i=1

(f(piu, qiv) + f(piv, qiu)− g(u, v)f(pi, qi)− g(pi, qi)f(u, v))

if λ = 0,
n∑

i=1

[
h(piu, qiv) + h(piv, qiu)− h(u, v)h(pi, qi)

]
if λ �= 0.
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The fact that F : I2 → R is measurable and satisfies
∑n

j=1 F (uj , vj) = 0
for all U, V ∈ Γn and for all n ≥ 2 implies

F (u, v) = a(u− v), u, v ∈ I2for some real constant a.

Indeed, for n = 2 we get with U = (u, 1− u), V = (v, 1− v) ∈ Γ2

F (u, v) + F (1− u, 1− v) = 0 for all u, v ∈ I.

For n = 3 we get with U = (u1, u2, 1−(u1+u2)), V = (v1, v2, 1−(v1+v2)) ∈ Γ3

that
F (u1, v1) + F (u2, v2) + F (1− (u1 + u2), 1− (v1, v2)) = 0.

But from last two equations result we obtain the 2-dimensional Cauchy-functi-
onal equation

F (u1, v1) + F (u2, v2) + F (u1 + u2, v1 + v2),

u1, u2, u1 + u2, v1, v2, v1 + v2 ∈ I.

Thus F (u, v) = au+ bv for some constants a, b ∈ R. But then we obtain

n∑
j=1

F (uj , vj) =

n∑
j=1

(auj + bvj) = a+ b = 0.

Thus a = −b and F has the form F (u, v) = a(u − v). Since F is measurable
and symmetric (since f and g are symmetric) we get F (u, v) = a(u − v) =
= F (v, u) = −a(u − v) for some constant a. Letting P,Q vary again we see
that a(P,Q) = −a(P,Q) = 0 and so F = 0 , too.

Now for fixed u, v ∈ Γn we define

(2.21) G(p, q) =

⎧⎪⎪⎨⎪⎪⎩
f(pu, qv) + f(pv, qu)− g(u, v)f(p, q)− g(p, q)f(u, v)
if λ = 0,

h(pu, qv) + h(pv, qu)− h(u, v)h(p, q) if λ �= 0.

Again, G is measurable, symmetric and satisfies

n∑
i=1

G(pi, qi) = F (u, v) = 0,(2.22)

and so that like above G = 0 . This means that f satisfies

1. (2.7) (that is, g is given by (2.13)) and (1.11), or

2. G(p, q) = 0, where h satisfies (1.11) and g is given by (2.13) (see (2.20)).
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Case 1. From (2.2) in Lemma 2.1 we obtain (using that L1 and L2 are
measurable)

(2.23) f(p, q) = pγqδ(a log p+ b log q) + pδqγ(a log q + b log p) p, q ∈ I

for some constants a, b, γ, δ, γ �= δ.

From (2.2) in Lemma 2.1 we get for arbitrary, but fixed p, q that

(2.24) L3(p) = c log p, c ∈ R, l(p, q) = d(q) log p = l(q, p) = d(p) log q

which implies d(p) = d log p for some d ∈ R. Using this we arrive at

(2.25) f(p, q) = pρqρ
(
c log(p · q) + d

(
log2 p+ log2 q− 2 log p log q

))
, ρ ∈ R.

Thus we get (2.14) and (2.15) by using the sum form of (Mn).

Case 2. From (2.20) we get f(p, q) = 1
λ (h(p, q) − g(p, q)), so Lemma 2.1

implies the representation (2.4) for f . Like in Chung et al [2] we get

g(p, q) = pαqβ + qαpβ or g(p, q) = 2pρqρ cos(σ log
pi
qi
),(2.26)

h(p, q) = pγqδ + qγpδ or h(p, q) = 2pμqμ cos(ν log
pi
qi
)(2.27)

for some constants α, β, (α �= β), γ, δ, (γ �= δ), ρ, σ, μ, ν. Then the cases h = 0
and h �= 0 lead to the solutions in (2.16) - (2.19).

Reversely, all solutions, given by (2.14)–(2.19) satisfy (1.9). �

Theorem 2.3. A deviation (Mn) fulfills the conditions of Theorem 2.2 and
satisfies Mn(P, P ) = 0 iff

(2.28) Mn(P,Q) = a
n∑

i=1

(
pγi q

δ
i − pδi q

γ
i

)
log

pi
qi

, γ �= δ, λ = 0

or

(2.29) Mn(P,Q) = b

n∑
i=1

(
log

pi
qi

)2

, λ = 0

or

(2.30) Mn(P,Q) =
1

λ

n∑
i=1

(
pαi q

δ
i − qαi p

δ
i

)(
qγ−α
i − pγ−α

i

)
, λ �= 0
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or
(2.31)

Mn(P,Q) =
1

λ

n∑
i=1

(
2p

γ+δ
2

i q
γ+δ
2

i cos

(
σ log

pi
qi

)
−
(
pγi q

δ
i + pδi q

γ
i

))
, λ �= 0,

where a, b, α, γ, δ, σ are arbitrary constants.

Proof. We put P = Q into (2.14)–(2.19) to obtain

Mn(P, P ) =

n∑
i=1

2(a+ b)pγ+δ
i log pi,(2.32)

Mn(P, P ) =

n∑
i=1

2c · p2ρi log pi,(2.33)

Mn(P, P ) = − 2

λ

n∑
i=1

pγ+δ
i �= 0,(2.34)

Mn(P, P ) = − 2

λ

n∑
i=1

p2ρi �= 0,(2.35)

Mn(P, P ) =
2

λ

n∑
i=1

(
pα+β
i − pγ+δ

i

)
,(2.36)

and Mn(P, P ) =
2

λ

n∑
i=1

(
p2ρi − pγ+δ

i

)
,(2.37)

respectively. Now we consider Mn(P, P ) = 0 in all cases. We get b = −a
in (2.32) and c = 0 in (2.33), which imply (2.28) and (2.29), respectively.
Moreover, (2.34) and (2.35) lead to no solution, whereas (2.36) leads to α+β =
= γ+δ. Putting β = γ+δ−α into (2.18) we have (2.30). Finally, Mn(P, P ) = 0
in (2.37) implies 2ρ = γ + δ which gives (2.31). �

The above distance measures contain many known measures as special case.
Let us mention the following examples:

(a) δ = 0 in (2.28) gives

Mn(P,Q) = a2γ−1Lγ,γ
n (P,Q).

(b) δ = 0 in (2.29) results in

Mn(P,Q) =
2α−1 − 2γ−1

λ
Lα,γ
n (P,Q).
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(c) α = 0 in (2.30) leads to

Mn(P,Q) = − 1

λ

n∑
i=1

(√
pγi q

δ
i −

√
pδi q

γ
i

)2

.

(d) (γ, δ) ∈ (1, 0), (0, 1) in (c) yields

Mn(P,Q) =
1

λ

n∑
i=1

(√
pi −

√
qi

)2

=
1

λ
D

1
2
n (P,Q) (see (1.17)).

(e) Note that

D
1
2
n (P,Q) =

2

λ

[
1−Bn(P,Q)

]
,

where Bn(P,Q) =

n∑
i=1

√
piqi is the Hellinger coefficient (see Hellinger [4]).

(f) If γ = 2α and δ = 1 in (c) then we get

Mn(P,Q) =
1

λ

n∑
i=1

(
pαi − qαi

)2

=
22α−1 − 2α−1

λ
Lα,2α
n (P,Q) =

=
1

λ
D

1
2
n (P,Q).
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A NOTE ON DYADIC HARDY SPACES

P. Simon (Budapest, Hungary)

Dedicated to the 60th birthday of Professor Antal Járai

Abstract. The usual Lp-norms are trivially invariant with respect to mul-
tiplication by Walsh functions. The analogous question will be investigated
in the dyadic Hardy space H. We introduce an invariant subspace H∗ of
H in this sense and show some properties of H∗. For example a function
in H∗ will be constructed the Walsh–Fourier series of which diverges in
L1-norm.

1. Introduction

Let wn (n ∈ N) be the Walsh–Paley system defined on the interval [0, 1). It
is well-known that wn =

∏∞
k=0 r

nk

k , where rk is the k-th Rademacher function
(k ∈ N) and n =

∑∞
k=0 nk2

k (nk = 0 or 1 for all k’s) is the dyadic represen-
tation of n. If n =

∑∞
k=0 nk2

k, m =
∑∞

k=0 mk2
k ∈ N then wnwm = wn⊕m,

where the operation ⊕ is defined by

n⊕m :=
∞∑
k=0

|nk −mk|2k.

Thus it is clear that

2n ⊕m = 2n +m (n ∈ N, m = 0, . . . , 2n − 1),

The Project is supported by the European Union and co-financed by the European Social
Fund (grant agreement no. TAMOP 4.2.1/B-09/1/KMR-2010-0003).
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i.e. rnwm = w2nwm = w2n+m. (For more details we refer to the book [1].) For
1 ≤ p ≤ ∞ let Lp := Lp[0, 1) and let ‖.‖p denote the usual Lebesgue space
and norm. If f ∈ L1, n ∈ N then let Snf be the n-th Walsh–Fourier partial
sum of f, i.e. Snf = f ∗ Dn, where Dn :=

∑n−1
k=0 wk and ∗ stands for dyadic

convolution. We remark that rnD2n = D2n+1 − D2n (n ∈ N). The next
famous property of D2n ’s plays an important role in the Walsh analysis:

(1) D2n(x) =

{
2n (0 ≤ x < 2−n)

0 (2−n ≤ x < 1).

Therefore

S2nf(x) = 2n
∫

In(x)

f (x ∈ [0, 1)).

Here x ∈ In(x) := [j2−n, (j + 1)2−n) with a proper integer j(x) = j =
= 0, . . . , 2n − 1. Set In := In(0).

We recall that

(2) sup
n

‖Dn‖1
log n

<∞.

The dyadic maximal function f∗ of f ∈ L1 is defined as follows:

f∗ := sup
n
|S2nf |.

Then for all p > 1 we have ‖f‖p ≤ ‖f∗‖p ≤ Cp‖f‖p. (Here and later Cp, C
will denote positive constants depending at most on p, although not always the
same in different occurences.) The so-called dyadic Hardy space H := H[0, 1)
is defined by means of the maximal function as follows:

H := {f ∈ L1 : ‖f‖ := ‖f∗‖1 <∞}.

The atomic structure of H is very useful in many investigations. Namely,

we call a function a ∈ L∞ (dyadic) atom if
∫ 1

0
a = 0 and there exists a dyadic

interval In(z) (n ∈ N, z ∈ [0, 1)) such that a(x) = 0 (x ∈ [0, 1) \ In(z)) and
‖a‖∞ ≤ 2n. Let supp a := In(z). The characterization of H by means of atoms
reads as follows:

f ∈ H ⇐⇒ f =

∞∑
k=0

αkak,

where all ak’s are atoms and the coefficients αk’s have the next property:∑∞
k=0 |αk| <∞. Furthermore,

‖f‖ ∼ inf
∞∑
k=0

|αk|,
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where the infimum is taken over all atomic representations
∑∞

k=0 αkak of f.
(For the martingale theoretic background we refer to [4].)

For example the functions rnD2n (n ∈ N) are trivially atoms by (1). Thus

(3) f :=

∞∑
n=0

αnrνn
D2νn

belongs to H if
∑∞

k=0 |αn| < ∞ and the indices ν0 < ν1 < . . . are choosen
arbitrarily. Moreover, ‖f‖1 ≤ ‖f‖ ≤

∑∞
n=0 |αn|.

It is not hard to see that the partial sums S2na (n ∈ N) remain atoms
if a ∈ L∞ is an atom. Indeed, if supp a = IN (z) (N ∈ N, z ∈ [0, 1)) and
x ∈ [0, 1) \ IN (z) then for all n ∈ N the intervals In(x) and IN (z) are disjoint
or In(x) ∩ IN (z) = IN (z). Thus

|S2na(x)| =
∣∣∣∣∣2n

∫
In(x)

a

∣∣∣∣∣ =
∣∣∣∣∣2n

∫
In(x)∩IN (z)

a

∣∣∣∣∣ ≤
∣∣∣∣∣2n

∫
IN (z)

a

∣∣∣∣∣ =
∣∣∣∣2n ∫ 1

0

a

∣∣∣∣ = 0,

thus S2na(x) = 0. Furthermore, ‖S2na‖∞ ≤ ‖a‖∞ ≤ 2N , i.e. supp S2na =

= IN (z) and
∫ 1

0
S2na =

∫ 1

0
a = 0.

Therefore if f =
∑∞

k=0 αkak is an atomic representation of f ∈ H then
S2nf =

∑∞
k=0 αkS2na (n ∈ N) is an atomic representation of S2nf. This

means that ‖S2nf‖ ≤
∑∞

k=0 |αk|, i.e. ‖S2nf‖ ≤ ‖f‖. (The last inequality
follows also from the obvious estimation (S2nf)

∗ ≤ f∗.)

We remark that H can be defined also in another way. To this end let
f ∈ L1 and

Qf :=

( ∞∑
n=−1

(δnf)
2

)1/2

be its quadratic variation, where δ−1f :=
∫ 1

0
f, δnf := S2n+1f − S2nf =

= f ∗ (rnD2n) (n ∈ N). Then

‖f‖ ∼ ‖Qf‖1 , ill. ‖f‖p ∼ ‖Qf‖p (1 < p <∞).

If f ∈ L1, n ∈ N and k = 0, . . . , 2n − 1, then wk is constant on In(x) (x ∈
∈ [0, 1)), consequently wk(x)

∫
In(x)

f =
∫
In(x)

(fwk). This means that wkS2nf =

= S2n(fwk). Furthermore, if 2n ≤ k ∈ N is arbitrary then let us write k =

=
∑N

j=0 kj2
j (with some N � N ≥ n). It is clear that

δj(wkS2nf) =

{
0 (j �= N)

wkS2nf (j = N)
(j ∈ N).
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From this it follows that Q(wkS2nf) = |S2nf |, i.e. for all k ∈ N we have

(4)
‖wkS2nf‖ = ‖S2n(fwk)‖ (k < 2n) and

‖wkS2nf‖ ≤ C‖S2nf‖1 (k ≥ 2n).

The Walsh–Paley system doesn’t form a basis in L1. Moreover, there exists
f ∈ H such that

sup
n
‖Snf‖1 =∞.

However (see [3]), if f ∈ H then

1

log n

n∑
k=1

‖Skf‖1
k

→ ‖f‖ (n→∞),

or equivalently

1

log n

n∑
k=1

‖f − Skf‖1
k

→ 0 (n→∞).

For the sake of the completeness and in order to demonstrate the usefulness of
the atomic structure we sketch some examples. Namely we take the function
given by (3). If ln = 0, 1, . . . , 2νn − 1 (n ∈ N) then

(∗) ‖S2νn+lnf − S2νn f‖1 = |αn|‖Dln‖1.

It is well-known that kn ∈ {0, 1, . . . , 2νn − 1} can be choosen so that

‖Dkn‖1 ≥ Cνn (n ∈ N)

holds. Then we get

‖S2νn+knf − S2νn f‖1 ≥ C|αn|νn (n ∈ N).

If supn |αn|νn =∞ then ‖S2nf‖1 ≤
∑∞

k=0 |αk| <∞ implies supn ‖Snf‖1 =∞.

It is obvious that αn := 2−n, νn := 2n
2

(n ∈ N) are suitable. (We remark
that infn |αn|νn > 0 is trivially sufficient for the ‖.‖1 divergence of the Walsh–
Fourier series of f.)

If f ∈ H is given by (3) then ‖Snf − f‖1 → 0 (n → ∞) if and only if
νnαn → 0 (n → ∞). Indeed, if ln := kn’s are as above then Cνn|αn| ≤
≤ |αn|‖Dkn‖1 and (∗) proves necessity. It is known that ‖S2ng − g‖1 → 0
(n → ∞) for all g ∈ L1. Therefore (see (2)) ‖Dln‖1 ≤ C log ln ≤ Cνn and
νnαn → 0 (n→∞) together with (∗) imply the ‖.‖1 convergence of the series
(3).
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Finally, we cite an example f ∈ L1\H such that ‖Snf−f‖1 → 0 (n→∞).
To this end we take a special function f :=

∑∞
n=0 αnrnD2n in (3) such that

the coefficients αn form a null-sequence of bounded variation, i.e.
∑∞

n=0 |αn −
−αn+1| <∞. It is well-known that this assumption on the coefficients implies
the ‖.‖1-convergence of the series in question. Indeed, for all n,m ∈ N, n < m
it follows by (1) that∥∥∥∥∥

m∑
k=n

αkrkD2k

∥∥∥∥∥
1

=

∥∥∥∥∥
m∑

k=n

αk(D2k+1 −D2k)

∥∥∥∥∥
1

=

=

∥∥∥∥∥
m∑

k=n+1

(αk−1 − αk)D2k + αmD2m − αnD2n

∥∥∥∥∥
1

≤

≤
m∑

k=n+1

|αk−1 − αk|‖D2k‖1 + |αm|‖D2m‖1 + |αn|‖D2n‖1 =

=

m∑
k=n+1

|αk−1 − αk|+ |αm|+ |αn| → 0 (n,m→∞).

Therefore f ∈ L1. Furthermore, if 2−k−1 ≤ x < 2−k (k ∈ N) then

Qf(x) =

√√√√ ∞∑
n=0

α2
nD

2
2n(x) =

√√√√ k∑
n=0

α2
n2

2n ≥ |αk|2k,

and

‖Qf‖1 ≥
∞∑
k=0

∫ 2−k

2−k−1

Qf ≥
∞∑
k=0

∫ 2−k

2−k−1

|αk|2k =
1

2

∞∑
k=0

|αk|.

This means that ‖f‖ = ∞ if
∑∞

k=0 |αk| = ∞. Now, we prove the ‖.‖1 conver-
gence of the sequence Snf. To this end let 1 ≤ n ∈ N and mn = 0, ..., 2n − 1.
Then by (2) we have

‖S2n+mn
f −S2nf‖1 = ‖αnrnDmn

‖1 = |αn|‖Dmn
‖1 ≤ C|αn| log mn ≤ Cn|αn|.

Hence nαn → 0 (n → ∞) is implies to ‖S2n+mn
f − S2nf‖1 → 0 (n → ∞).

Since ‖S2nf −f‖1 → 0 (n→∞) we get ‖Snf −f‖1 → 0 (n→∞). A simple
calculation shows that the sequence

αn :=
1

(n+ 2) log (n+ 2)
(n ∈ N)

satisfies all of the conditions above. By means of similar observations it can
be proved that the assumption

∑∞
n=0 |αn| <∞ in (3) is necessary to f ∈ H in

the general case as well.
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2. Results

It is clear that for all f ∈ Lp (1 ≤ p ≤ ∞) and n ∈ N we have fwn ∈ Lp

and ‖fwn‖p = ‖f‖p. The situation in the case of H is more complicated. For
example if we take the atoms fn := rnD2n ∈ H (n ∈ N) then ‖fn‖ = 1 and

‖rnfn‖ = ‖D2n‖ = ‖D∗
2n‖1 =

∥∥∥∥max
k≤n

D2k

∥∥∥∥
1

,

where by (1)

max
k≤n

D2k(x) =

{
2k (2−k−1 ≤ x < 2−k, k = 0, . . . , n− 1)

2n (0 ≤ x < 2−n).

From this it follows immediately that ‖D2n‖ = n+ 2
2 , i.e.

‖rnfn‖ = ‖w2nfn‖ =
n+ 2

2
‖fn‖.

First we prove that an analogous relation holds in general.

Theorem 1. Let k ∈ N. Then there exists a constant Ck such that for all
f ∈ H the product fwk belongs to H and ‖fwk‖ ≤ Ck‖f‖.

Our example above shows that C2n ≥ n+ 2
2 (n ∈ N), i.e. supk Ck = ∞.

Since all Walsh functions are final products of Rademacher functions, we need
to prove Theorem 1 only for k = 2n (n ∈ N).

In this case let f =
∑∞

k=0 αkak be an atomic representation of f ∈ H. Then

‖fw2n‖ = ‖frn‖ = ‖(frn)∗‖1 ≤
∥∥∥∥∥

∞∑
k=0

|αk|(akrn)∗
∥∥∥∥∥
1

≤

≤
∞∑
k=0

|αk|‖(akrn)∗‖1 =
∞∑
k=0

|αk|‖akrn‖.

If we can show that

(∗∗) An := sup
a
‖arn‖ <∞
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(where the supremum is taken over all atoms a), then

‖(frn)∗‖1 ≤ An

∞∑
k=0

|αk|,

i.e. ‖frn‖ ≤ An‖f‖.

Proof of the inequality (∗∗). Let a be an atom, k ∈ N, x ∈ [0, 1). In the
case k > n the n-th Rademacher function rn is constant on the interval Ik(x)
and thus

S2k(arn)(x) = 2k
∫
Ik(x)

arn = 2krn(x)

∫
Ik(x)

a.

Therefore

(arn)
∗ = sup

k
|S2k(arn)| ≤ max

k≤n
|S2k(arn)|+ sup

k>n
|S2ka| ≤

≤ max
k≤n

|S2k(arn)|+ sup
k
|S2ka| = max

k≤n
|S2k(arn)|+ a∗ =: (arn)

∗∗ + a∗.

From this it follows that

‖arn‖ = ‖(arn)∗‖1 ≤ ‖(arn)∗∗‖1 + ‖a∗‖1 =

= ‖(arn)∗∗‖1 + ‖a‖ ≤ ‖(arn)∗∗‖1 + 1.

This means that it is enough to show only

sup
a
‖(arn)∗∗‖1 <∞

(where the supremum is taken over all atoms a).

To this end let a be an atom. For the sake of simplicity we assume that
supp a = IN (with some N ∈ N). Then

‖(arn)∗∗‖1 =

∫
IN

(arn)
∗∗ +

1∫
2−N

(arn)
∗∗ =: J1(a) + J2(a).

Hence by means of the Cauchy inequality and the properties of atoms it follows
that

J1(a) ≤

⎛⎝∫
IN

((arn)
∗∗)2

⎞⎠1/2

· 2−N/2 ≤ 2−N/2‖(arn)∗∗‖2 ≤ C22
−N/2‖arn‖2 ≤

≤ C22
−N/2‖a‖∞2−N/2 ≤ C2.
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We will show that
sup
a

J2(a) <∞.

Indeed, if a is the atom as above and n < N, then arn = a, i.e.

J2(a) ≤ ‖(arn)∗∗‖1 = ‖max
k≤n

|S2ka|‖1 ≤ ‖a∗‖1 = ‖a‖ ≤ 1.

Thus it can be assumed that N ≤ n. Let k = 0, ..., n and 2−N ≤ x < 1. Then

S2k(arn)(x) = 2k
∫

Ik(x)

arn = 2k
∫

Ik(x)∩IN

arn,

where Ik(x)∩ IN �= ∅ exactly if k ≤ N −1 and x < 2−k (in this case Ik(x) = Ik
and Ik(x) ∩ IN = IN ). This means that with the notation k0(x) := max{k =
= 0, ..., N − 1 : x < 2−k} we get

(arn)
∗∗(x) = max

k≤k0(x)
|S2k(arn)(x)| = max

k≤k0(x)
2k

∣∣∣∣∣∣
∫
IN

arn

∣∣∣∣∣∣ ≤
≤ max

k≤k0(x)
2k‖a‖1 ≤ 2k0(x) ≤ 1

x
.

Summarizing the above facts it follows that

J2(a) =

1∫
2−N

(arn)
∗∗ ≤

1∫
2−N

dx

x
≤ C log2 2

N = CN ≤ Cn,

which proves Theorem 1.

Therefore it can be assumed that n+ 2
2 ≤ C2n ≤ C(n + 1) (n ∈ N).

Furthermore, if n =
∑∞

j=0 nj2
j is the dyadic representation of n ∈ N, then

‖fwn‖ ≤ ‖f‖
∞∏
j=0

C
nj

2j ≤ C |n|[n]‖f‖ (f ∈ H),

where |n| :=
∑∞

j=0 nj , and [n] :=
∏∞

j=0(j + 1)nj , and the above estimation

cannot be improved. For example |2k| = 1 and [2k] = k + 1 (k ∈ N).

Theorem 1 involves the next concept: if f ∈ H then let

‖f‖∗ := sup
n
‖fwn‖.
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It follows immediately that ‖.‖∗ is a norm, ‖.‖ ≤ ‖.‖∗ but (see the above
remarks) ‖.‖∗, ‖.‖ are not equivalent. Moreover, it is not hard to construct
f ∈ H such that ‖f‖∗ = ∞. Indeed, we take the function given in (3). Then
for all k ∈ N we get

‖frνk
‖ ≥ |αk|‖D2νk ‖ −

∥∥∥∥∥∥
∞∑

k �=n=0

αnrνk
rνn

D2νn

∥∥∥∥∥∥ .
It is clear that all products rνk

rνn
D2νn (k �= n ∈ N) are atoms, which implies∥∥∥∥∥∥

∞∑
k �=n=0

αnrνk
rνnD2νn

∥∥∥∥∥∥ ≤
∞∑

n=0

|αn| = q <∞.

Then

‖f‖∗ ≥ ‖frνk
‖ ≥ |αk|‖D2νk ‖ − q = |αk|

νk + 2

2
− q →∞ (k →∞)

follows by means of a suitable choice of parameters.

F. Schipp (see [2]) introduced the following norms

‖f‖∗p := ‖ sup
n

Q(fwn)‖p , ‖f‖∗p :=

∥∥∥∥sup
m,n

|S2m(fwn)|
∥∥∥∥
p

(f ∈ L1, 1 ≤ p <∞),

and proved the non-trivial equivalence ‖f‖∗p ∼ ‖f‖p (1 < p <∞). It is clear
that these norms are shift invariant, i.e. for all n ∈ N the equalities ‖fwn‖∗p =
= ‖f‖∗p, ‖fwn‖∗p = ‖f‖∗p hold. Furthermore, the inequality ‖.‖∗ ≤ ‖.‖∗1
follows immediately. Moreover, for all k ∈ N we get

‖fwk‖ ≤ C‖Q(fwk)‖1 ≤ C‖ sup
n

Q(fwn)‖1 = C‖f‖∗1,

i.e. ‖f‖∗ ≤ C‖f‖∗1 holds, too. Schipp proved for F :=
∑∞

n=0 2
−n/2r2nD22n

that F ∈ H but ‖F‖∗1 = ∞. (This example is a special case of (3).) Our
example above along with ‖.‖ ≤ ‖.‖∗ ≤ ‖.‖∗1 shows also the existence of f ∈ H
such that ‖f‖∗1 =∞. The question wheter the norm ‖.‖∗1 and the norm ‖.‖∗1
are equivalent or not remains open.

Let us introduce the space H∗ as follows:

H∗ := {f ∈ H : ‖f‖∗ <∞}.
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Then H∗ is a proper subspace of H. For all n, k ∈ N it is clear that 1 = ‖wn‖ =
= ‖wk⊕n‖ = ‖wkwn‖, i.e. ‖wn‖∗ = 1. Thus wn ∈ H∗ and therefore every
Walsh polynomial (finite linear combination of Walsh functions) belongs to
H∗. Furthermore, if f ∈ H∗ then

‖fwn‖∗ = sup
k
‖fwnwk‖ = sup

k
‖fwn⊕k‖ = sup

j
‖fwj‖ = ‖f‖∗.

In other words the norm ‖.‖∗ is also invariant with respect to multiplication
by Walsh functions.

Above we remarked that there exists f ∈ H such that its Walsh–Fourier se-
ries diverges in ‖.‖1 norm. We show that this result can be sharpened. Namely,
the next theorem holds:

Theorem 2. There exists f ∈ H∗ with ‖.‖1-divergent Walsh–Fourier se-
ries.

Proof. We take the function f :=
∑∞

n=0 αnrνnD2νn from (3). It was shown
above (see (∗)) that q :=

∑∞
n=0 |αn| < ∞ and infn |αn|νn > 0 imply the ‖.‖1

divergence of the Walsh–Fourier series of f .

To the proof of f ∈ H∗ let k =
∑∞

j=0 kj2
j be the dyadic representation of

k ∈ N. Then wk =
∏∞

j=0 r
kj

j . Taking into account that

wkrsD2s =

∞∏
j=s

r
kj

j rsD2s (s ∈ N)

is obviously an atom, provided ks = 0 or ks = 1, but there is j ≥ s + 1 such
that kj = 1. Let Ns be the set of such k’s. Then k ∈ Ns := N \ Ns iff

k = 2s +
∑s−1

j=0 kj2
s, i.e. Ns = N ∩ [2s, 2s+1). In this case wkrsD2s = D2s .

If k /∈
⋃∞

n=0 N
νn , then

fwk =

∞∑
n=0

αnwkrνnD2νn

is an atomic representation of fwk and so ‖fwk‖ ≤
∑∞

n=0 |αn| = q.

If k ∈
⋃∞

n=0 N
νn , then there is a unique m ∈ N such that k ∈ Nνm :

fwk = αmD2νm +

∞∑
m �=n=0

αnwkrνn
D2νn =: αmD2νm + f0.
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The above observations lead to ‖f0‖ ≤
∑∞

n=0 |αn| = q <∞ and

‖fwk‖ ≤ |αm|‖D2νm ‖+ ‖f0‖ ≤ C|αm|νm + q.

We see that the assumption supn |αn|νn <∞ is sufficient to

sup
k
‖fwk‖ ≤ C sup

n
|αn|νn + q <∞.

In this case f ∈ H∗. For example if αn := 2−n, νn := 2n (n ∈ N), then the
function f =

∑∞
n=0 2

−nr22nD22n proves Theorem 2.

If f ∈ H then Qf ∈ L1, i.e. Qf =
(∑∞

k=−1(δkf)
2
)1/2

< ∞ a.e. Thus(∑∞
k=n(δkf)

2
)1/2 → 0 (n→∞) a.e. and we get by Lebesgue’s theorem that

‖f − S2nf‖ ≤ C‖Q(f − S2n)‖1 = C

∥∥∥∥∥∥
( ∞∑

k=n

(δkf)
2

)1/2
∥∥∥∥∥∥
1

→ 0 (n→∞).

However, this last convergence property doesn’t hold true if the norm ‖.‖ will
be replaced by ‖.‖∗. Indeed, taking the function f ∈ H∗ from the proof of
Theorem 2 we get analogously that

‖f − S2νn f‖∗ =

∥∥∥∥∥
∞∑

k=n

αkrνk
D2νk

∥∥∥∥∥
∗
≥ C inf

k≥n
|αk|νk − q (n ∈ N).

Let αk := 2−k, νk := 2k+s (k ∈ N), where s ∈ N is defined by 2sC > 2. Then
q =

∑∞
k=0 |αk| = 2 and ‖f − S2νn f‖∗ ≥ 2sC − 2 (n ∈ N), i.e. ‖f − S2nf‖∗

doesn’t tend to zero if n→∞.

We recall that ‖S2nf‖1 ≤ ‖f‖1 (f ∈ L1), ‖S2nf‖ ≤ ‖f‖ (f ∈ H, n ∈ N).
Applying (4) it is not hard to prove that an analogous inequality holds if we
replace the norm ‖.‖ by ‖.‖∗. Indeed,

‖S2nf‖∗ = sup
k
‖wkS2nf‖ = max

{
sup
k<2n

‖wkS2nf‖, sup
k≥2n

‖wkS2nf‖
}
≤

≤ max

{
sup
k<2n

‖fwk‖, C‖S2nf‖1
}
≤ max

{
sup
k
‖fwk‖, C‖f‖1

}
≤ C‖f‖∗.

Hence if f ∈ L1 then

‖f‖∗ = sup
n
‖(fwn)

∗‖1 = sup
n
‖ sup

m
|S2m(fwn)|‖1.
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Let p > 1 and f ∈ Lp. Then for arbitrary n ∈ N we can write

‖fwn‖ = ‖(fwn)
∗‖1 ≤ ‖(fwn)

∗‖p ≤ Cp‖fwn‖p = Cp‖f‖p,

i.e. ‖f‖∗ ≤ Cp‖f‖p. Thus Lp ⊂ H∗. In other words
⋃

p>1 L
p ⊂ H∗. We will

show that the next statement holds:

Theorem 3. H∗ \
(⋃

p>1 L
p
)
�= ∅.

Proof. Let 1 < p < ∞ and take the function f =
∑∞

n=0 2
−nr22nD22n =:

=:
∑∞

n=0 αnrνn
D2νn as in the proof of Theorem 2. Then f ∈ H∗. On the other

hand

‖f‖pp ≥ Cp‖Qf‖pp ≥ Cp

∥∥∥∥∥∥
√√√√ ∞∑

n=0

α2
nD

2
2νn

∥∥∥∥∥∥
p

p

≥ Cp

∞∑
k=0

2−νk∫
2−νk−1

(
k∑

n=0

α2
nD

2
2νn

)p/2

=

= Cp

∞∑
k=0

2−νk

(
k∑

n=0

α2
n2

2νn

)p/2

≥ Cp

∞∑
k=0

αp
k2

(p−1)νk =∞.
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FOURIER TRANSFORM FOR

MEAN PERIODIC FUNCTIONS

László Székelyhidi (Debrecen, Hungary)

Dedicated to the 60th birthday of Professor Antal Járai

Abstract. Mean periodic functions are natural generalizations of periodic
functions. There are different transforms - like Fourier transforms - defined
for these types of functions. In this note we introduce some transforms and
compare them with the usual Fourier transform.

1. Introduction

In this paper C(R) denotes the locally convex topological vector space of
all continuous complex valued functions on the reals, equipped with the linear
operations and the topology of uniform convergence on compact sets. Any
closed translation invariant subspace of C(R) is called a variety. The smallest
variety containing a given f in C(R) is called the variety generated by f and it
is denoted by τ(f). If this is different from C(R), then f is called mean periodic.
In other words, a function f in C(R) is mean periodic if and only if there exists
a nonzero continuous linear functional μ on C(R) such that

(1) f ∗ μ = 0
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Key words and phrases: Mean periodic function, Fourier transform, Carleman transform.

The research was supported by the Hungarian National Foundation for Scientific Research
(OTKA), Grant No. NK-68040.



268 L. Székelyhidi

holds. In this case sometimes we say that f is mean periodic with respect to μ.
As any continuous linear functional on C(R) can be identified with a compactly
supported complex Borel measure on R, equation (1) has the form

(2)

∫
f(x− y) dμ(y) = 0

for each x in R. The dual of C(R) will be denoted byMC(R). As the convolu-
tion of two nonzero compactly supported complex Borel measures is a nonzero
compactly supported Borel measure as well, all mean periodic functions form
a linear subspace in C(R). We equip this space with the following topology.
For each nonzero μ from the dual of C(R) let V (μ) denote the solution space
of (1). Clearly, V (μ) is a variety and the set of all mean periodic functions is
equal to the union of all these varieties. We equip this union with the inductive
limit of the topologies of the varieties V (μ) for all nonzero μ from the dual of
C(R). The locally convex topological vector space obtained in this way will be
denoted by MP(R), the space of mean periodic functions.

An important class of mean periodic functions is formed by the exponential
polynomials. We call a function of the form

(3) ϕ(x) = p(x) eλx

an exponential monomial, where p is a complex polynomial and λ is a complex
number. If p ≡ 1, then the corresponding exponential monomial x �→ eλx is
called an exponential. Exponential monomials of the form

(4) ϕk(x) = xk eλx

with some natural number k and complex number λ, are called special expo-
nential monomials.

Linear combinations of exponential monomials are called exponential poly-
nomials. To see that the special exponential monomial in (3) is mean periodic
one considers the measure

(5) μk = (eλ δ1 − δ0)
k+1 ,

where δy is the Dirac–measure concentrated at the number y for each real y,
and the k + 1-th power is meant in convolution-sense. It is easy to see that

ϕk ∗ μk = 0

holds. Sometimes we write 1 for δ0.

Exponential polynomials are typical mean periodic functions in the sense
that any mean periodic function f in V (μ) is the uniform limit on compact sets
of a sequence of linear combinations of exponential monomials, which belong
to V (μ), too. More precisely, the following theorem holds (see [9]).
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Theorem 1 (L. Schwartz, 1947). In any variety of C(R) the linear hull of all
exponential monomials is dense.

A similar theorem in C(Rn) fails to hold for n ≥ 2 as it has been shown
in [4] by D. I. Gurevich. Moreover, he gave examples for nonzero varieties in
C(R2) which do not contain nonzero exponential monomials at all. However,
as it has been shown by L. Ehrenpreis in [1], Theorem 1 can be extended to
varieties of the form V (μ) in C(Rn) for any positive integer n.

Another important result in [9] is the following (Théorème 7, on p. 881.):

Theorem 2. In any proper variety of C(R) no special exponential monomial
is contained in the closed linear hull of all other special exponential monomials
in the variety.

In other words, if a variety V �= {0} in C(R) is given, then for each special
exponential monomial ϕ0 in V there exists a measure μ in MC(R) such that
μ(ϕ0) = 1 and μ(ϕ) = 0 for each special exponential monomial ϕ �= ϕ0 in V .

2. A mean operator for mean periodic functions

Based on Theorems 1 and 2 by L. Schwartz we introduced a mean operator
on the space MP(R) in the following way (see also [10], pp. 64–65.).

For each x, y in R and f in C(R) let

τyf(x) = f(x+ y) ,

and call τyf the translate of f by y. The continuous linear operator τy on C(R)
is called translation operator. The operator τ0 will be denoted by 1. Clearly,
the continuous function f is a polynomial of degree at most k if and only if

(6) (τy − 1)k+1f(x) = 0

holds for each x, y in R and for k = 0, 1, . . . . The set P(R) of all polynomials
is a subspace of MP(R), which we equip with the topology inherited from
MP(R).

Theorem 3. The subspace P(R) is closed in MP(R).

Proof. First we show that the set of the degrees of all polynomials in any
proper variety is bounded from above. By the Taylor–formula it follows that
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the derivative of a polynomial is a linear combination of its translates, hence if
a polynomial belongs to a variety then all of its derivatives belong to the same
variety, too. Therefore, if the set of the degrees of all polynomials in a proper
variety is not bounded from above, then all polynomials belong to this variety.
But, in this case, by the Stone–Weierstrass–theorem, all continuous functions
must belong to the variety, hence it cannot be proper.

Suppose now that (pi)i∈I is a net of polynomials which converges inMP(R)
to the continuous function f . By the definition of the inductive limit topology
there exists a nonzero μ inMc(R) such that pi belongs to V (μ) for each i in I.
By our previous consideration, for the degrees we have deg pi ≤ k for some
positive integer k. By (6) this means that

(τy − 1)k+1pi(x) = 0

holds for each x, y in R. This implies that the same holds for f , hence f is a
polynomial of degree at most k, too. The theorem is proved. �

Theorem 4. There exists a unique continuous linear operator

M :MP(R)→ P(R)

satisfying the properties

1) M(τyf) = τy M(f),

2) M(p) = p

for each f in MP(R), p in P(R) and y in R.

Proof. First we prove uniqueness. By Theorem 1, it is enough to show
that the properties of M determine M on the set of all special exponential
monomials. Let m �= 1 be any nonzero continuous complex exponential. Then
we have

M(m) = M
[
m(−y)τym

]
= m(−y)M(τym) = m(−y)τyM(m),

which implies that either M(m) = 0 or m is a polynomial. Hence M(m) = 0.
Suppose that we have proved for j = 0, 1, . . . , k − 1 that

M
[
xjm(x)

]
= 0

for any continuous complex exponential m �= 1. Then we have

M
[
(x+ y)km(x+ y)

]
= M

[ k∑
j=0

(
k

j

)
xjyk−jm(x)m(y)

]
=
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=

k∑
j=0

(
k

j

)
yk−jm(y)M

[
xjm(x)

]
= m(y)M

[
xkm(x)

]
,

which implies, as above, that M
[
xkm(x)

]
= 0. This proves the uniqueness.

In order to prove existence, first we notice, that, by Theorem 2, for any
nonzero μ in Mc(R), the exponential 1 is not contained in the closed linear
subspace of C(R) spanned by all special exponential monomials in V (μ) different
from 1. This implies the existence of a measure μ0 inMc(R) such that μ0(1) =
= 1, further μ0(ϕ) = 0 for any special exponential monomial ϕ �= 1 in V (μ).

From this fact it follows, that xkm(x) ∗ μ0 = 0 for each positive integer k
and exponential m �= 1 in V (μ), further xk ∗ μ0 = xk. This shows, that ϕ ∗ μ0

is a polynomial in V (μ) for any exponential polynomial ϕ in V (μ). On the
other hand, as in the proof of Theorem 3, it follows that if a polynomial of
degree n belongs to V (μ), then all the functions 1, x, x2, . . . , xn also belong to
V (μ). Hence, all polynomials in V (μ) have a degree smaller than some fixed
positive integer. Now, if f is arbitrary in V (μ), then by Theorem 1, there
exist exponential polynomials ϕi in V (μ) such that f = limϕi. Then we have
f ∗ μ0 = lim(ϕi ∗ μ0), hence also f ∗ μ0 is a polynomial.

Suppose now, that f belongs also to some V (ν) with some nonzero ν. Then
f ∗ μ0 also belongs to V (ν), and it is a polynomial. Hence we have f ∗ μ0 =
= f ∗ μ0 ∗ ν0. Similarly, f ∗ ν0 = f ∗ ν0 ∗ μ0. Hence f ∗ μ0 does not depend on
the special choice of μ0. On the other hand, each f in MP(R) is contained in
some V (μ) with μ �= 0, and we can define

M(f) = f ∗ μ0

with any μ0 in Mc(R) satisfying the previous properties. The continuity and
linearity of M follows from the definition, 1) follows from the properties of
convolution, and 2) has been proved. �

3. The Fourier transform

For each f in C(R) we define f̌ by the formula

(7) f̌(x) = f(−x)

for any x in R. It is obvious, that fm̌ is mean periodic for any f inMP(R) and
for any continuous complex exponential m. Hence we may define f̂ as follows:

(8) f̂(m) = M(fm̌)

for any nonzero continuous exponential m.
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Theorem 5. The map f �→ f̂ defined above is linear and has the following
properties:

1) p̂(m) = 0 for m �= 1 and p̂(1) = p ,

2) (p f )̂ (m) = pf̂(m) ,

3) (τyf )̂ (m) = m(y)τy
(
f̂(m)

)
,

4) (f̌ )̂ (m) =
[
f̂(m̌)

]̌
for any f in MP(R), for any p in P(R) and for each y in R, whenever p f is
mean periodic.

Proof. In the proof of Theorem 4 we have seen that M(pm) = 0 for
each polynomial p and exponential m �= 1. This means that if the exponential
polynomial ϕ has the form

(9) ϕ(x) = p0(x) +

k∑
i=1

pi(x)mi(x)

for each real x, where k is a nonnegative integer, p0, p1, . . . , pk are polynomials
and m1,m2, . . . ,mk are different exponentials, then we have

(10) M(ϕ) = p0 .

Clearly, this implies 1) − 4) for any exponential polynomial f = ϕ. Then, by
Theorem 1, our statements follow for any mean periodic f . �

Theorem 6 (”Uniqueness Theorem”). For any f in MP(R), if f̂ = 0, then
f = 0.

Proof. From the previous theorem it follows by linearity and continuity,
that ϕ̂ = 0 for all ϕ in τ(f). In particular, ϕ̂ = 0 for any exponential polynomial
ϕ in τ(f), hence, by (9), we have that the only exponential polynomial in τ(f)
is 0. Now our statement is a consequence of Theorem 1. �

As the exponentials of the additive group of R can be identified with com-
plex numbers, there is a one to one mapping between C and the set of all expo-
nentials. Hence, instead of f̂(m) we can write f̂(λ), where λ is the unique com-
plex number corresponding to the exponential m. By Theorem 5 the Fourier
transform of the mean periodic function f is a polynomial-valued mapping f̂ ,
which is defined on C, the set of complex numbers, having the properties listed
in 5. On the other hand, the Fourier transformation f �→ f̂ is an injective,
linear mapping ofMP(R) into the set of all polynomial-valued mappings of C
into P(R), having the properties listed in 5. If f is a bounded mean periodic
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function, then τ(f) consists of bounded functions, in particular, each expo-
nential is a character and each polynomial in τ(f) is constant. Hence, in this

case M(f) is a constant, and f̂(m) is constant, for each character m of R. In
particular, using the results in [8] we have the following theorem.

Theorem 7. For any almost periodic f in MP(R), the function f̂ coincides
with the Fourier transform of f as an almost periodic function in the sense of
Bohr.

For exponential polynomials we have the following immediate ”Inversion
Theorem”.

Theorem 8. Let f be an exponential polynomial. Then

(11) f(x) =
∑
λ∈C

f̂(λ)(x) eλx

holds for each x in R.

For any mean periodic f we call the spectrum of f the set sp(f) of all
complex numbers λ for which the exponential x �→ eλx belongs to the variety
τ(f) generated by f . The following theorem is easy to prove.

Theorem 9. A mean periodic function is a polynomial if and only if its spec-
trum is {0}. It is an exponential monomial if and only if its spectrum is a
singleton and it is an exponential polynomial if and only if its spectrum is
finite.

4. The Carleman transform

As we have seen in the previous section it is possible to introduce a Fourier–
like transform for mean periodic functions on R which enjoys several useful
properties similar to the classical Fourier transform. However, this transform
yields a polynomial-valued function, hence the role of classical Fourier coeffi-
cients are played by polynomials. The existence of this transform depends on
the mean operator, which is a kind of mean value, but it takes polynomials as
values, instead of numbers. The most important property of this mean — be-
sides linearity and continuity — is that it commutes with translations: instead
of translation invariance we have translation covariance, which — obviously —
reduces to translation invariance in case of constant functions. The Fourier
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transform, based on this mean operator, can be realized in case of exponential
polynomials as follows: if the exponential polynomial ϕ has the canonical rep-
resentation (9) for each real x, where k is a nonnegative integer, p0, p1, . . . , pk
are polynomials and m1,m2, . . . ,mk are different exponentials, then the mean
operator M takes the value p0 on ϕ, and, more generally, the Fourier trans-
form of ϕ at λ is the polynomial pλ, which is the coefficient of the exponential
x �→ eλx in the canonical representation of ϕ. As spectral analysis and spec-
tral synthesis hold in R by [9], heuristically, the support of f̂ consists of those
λ’s which take part in the spectral analysis of f in the sense, that the corre-
sponding exponentials x �→ eλx belong to the spectrum of f , and the value
f̂(λ) = M

[
f(x) · e−λx], which is a polynomial, shows, to what content this

exponential takes part in the reconstruction process of f from its spectrum: in
the spectral synthesis of f .

As the existence of the Fourier transform introduced above is a result of
a transfinite procedure, depending on Hahn–Banach-theorem, it is not clear
how to determine the value of f̂ at some complex number λ, how to compute
it, if a general mean periodic function f is given, which is not necessarily an
exponential polynomial. In other words, it is not clear how to compute the
coefficients of the polynomial f̂(λ) for a general mean periodic function f . On
the other hand, an ”Inversion Theorem”-like result would be highly welcome,
for which, as usual, different estimates on the ”Fourier–like coefficients” were
necessary.

In his fundamental work [6] (see also [5]) J. P. Kahane used another trans-
form based on the Carleman transform (see [3]). Here we present the details.

Let f be a mean periodic function in MP(R) and we put

(12) f−(x) =
{

0, x ≥ 0
f(x), x < 0 .

As f is mean periodic, there exists a nonzero compactly supported Borel
measure in Mc(R) such that

(13) f ∗ μ = 0

holds. Denote μ any of such measures and we put

(14) g = f− ∗ μ .

It is easy to see, that the support of g is compact (see [6], Lemma on p. 20).
The Carleman transform of f is defined as

(15) C(f)(w) = ĝ(w)

μ̂(w)
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for each w in C which is not a zero of μ̂. By the Paley–Wiener-theorem (see
e.g. [11]) ĝ and μ̂ are entire functions of exponential type, hence C(f) is mero-
morphic. Originally Carleman in [3] introduced this transform for functions
which are not very rapidly increasing at infinity, but Kahane observed that it
works also for mean periodic functions.

We present a simple example for the computation of this transform. Let

f(x) = x

for each x in R. Then f is mean periodic and τ(f) is annihilated by the measure

μ = (δ1 − 1)2 .

The Fourier transform of μ is as follows:

μ̂(w) =

∫
e−iwx dμ(x) =

∫
e−iwx d(δ1−1)2(x) =

∫
e−iwx d(δ2−2δ1+1)(x) =

= e−2iw − 2e−iw + 1 = (e−iw − 1)2

for each w in C. The next step is to form the function f− (see (12)). Hence,
we have, by (14)

g(x) =
(
f− ∗ μ

)
(x) =

∫
f−(x− y) dμ(y) =

∫
f−(x− y) d(δ2 − 2δ1 + 1)(y) =

= f−(x− 2) + 2f−(x− 1) + f−(x) =

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x ≥ 2

x− 2, 2 > x ≥ 1

−x, 1 > x ≥ 0

0, 0 > x .

The Fourier transform of g is

ĝ(w) =

∫
g(x)e−iwx dx =

2∫
0

g(x)e−iwx dx =

=

2∫
1

(x− 2)e−iwx dx−
1∫

0

xe−iwx dx =

= − 1

iw
e−iw − 1

(iw)2

(
e−2iw − e−iw

)
+

1

iw
e−iw +

1

(iw)2

(
e−iw − 1

)
=

= − 1

(iw)2
(e−iw − 1)2 .
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From this we have

C(f)(w) =
− 1

(iw)2 (e
−iw − 1)2

(e−iw − 1)2
= − 1

(iw)2

for each w in C which is not a zero of μ̂.

At this moment one cannot see any relation between C(f) and f̂ . Consider
another easy example. Let

f(x) = x3 eλx ,

where x is real and λ is a complex number. In this case we can take

μ = (eλ − 1)4 ,

and
μ̂(w) =

(
e−(iw−λ) − 1

)4
,

further

ĝ(w) = − 3!

(iw − λ)4
(
e−(iw−λ) − 1

)4
,

and finally

C(f)(w) = ĝ(w)

μ̂(w)
= − 3!

(iw − λ)4
.

We shall see that there is an intimate relation between the Carleman trans-
form and the Fourier transform of exponential monomials. First we need the
following theorem.

Theorem 10. For each x in R let

(16) f(x) = p(x)eλx ,

where p is a polynomial and λ is a complex number. Then we have

(17) C(f)(w) = −
∞∑
k=0

p(k)(0)

(iw − λ)k+1
,

where the sum is actually finite.

Proof. Let
fk(x) = xkeλx

for each nonnegative integer k and complex number λ. Then fk is mean periodic
and τ(f) is annihilated by the finitely supported measure

μk = (eλδ1 − 1)k+1 .
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Indeed, we have for each x in R

fk ∗ μk(x) =

∫
fk(x− y) dμ(y) =

k+1∑
j=0

(
k + 1

j

)
(−1)k+1−jeλj(x− j)keλx−λj =

= eλx
k+1∑
j=0

(
k + 1

j

)
(−1)k+1−j(x− j)k = eλx (τ−1 − 1)k+1ϕk(x) = 0

by (6), where
ϕk(x) = xk

for x in R.

Let w be a complex number. For the sake of simplicity set

T = iw − λ .

The Fourier transform of μk at w in C is

μ̂k(w) =

∫
e−iwx dμk(x) =

k+1∑
j=0

(
k + 1

j

)
(−1)k+1−jeλje−iwj =

(
e−T − 1

)k+1
.

As

f−
k (x) =

{
0, x ≥ 0
fk(x), x < 0

it follows for l = 0, 1, . . . , k

gk(x) = f−
k ∗ μk(x) =

∫
f−
k (x− y) dμk(y) =

=

⎧⎨⎩
0, k + 1 ≤ x;

eλx
∑k+1

j=l+1

(
k+1
j

)
(−1)k+1−j(x− j)k, l ≤ x < l + 1;

0, x < 0.

By definition, the Fourier transform of gk at w in C is

ĝk(w) =

∫
e−iwxgk(x) dx =

k∑
l=0

l+1∫
l

e−iwxgk(x) dx =

=

k∑
l=0

k+1∑
j=l+1

(
k + 1

j

)
(−1)k+1−j

l+1∫
l

(x− j)ke−Tx dx .
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Using the fact, like above, that

k+1∑
j=0

(
k + 1

j

)
(−1)k+1−j(x− j)k = 0 ,

we have

ĝk(w) =

k∑
l=0

k+1∑
j=l+1

(
k + 1

j

)
(−1)k+1−j

l+1∫
l

(x− j)ke−Tx dx =

=
k∑

l=0

k+1∑
j=0

(
k + 1

j

)
(−1)k+1−j

l+1∫
l

(x− j)ke−Tx dx−

−
k∑

l=0

l∑
j=0

(
k + 1

j

)
(−1)k+1−j

l+1∫
l

(x− j)ke−Tx dx =

=
k∑

l=0

l+1∫
l

[ k+1∑
j=0

(
k + 1

j

)
(−1)k+1−j(x− j)k

]
e−Tx dx−

−
k∑

l=0

l∑
j=0

(
k + 1

j

)
(−1)k+1−j

l+1∫
l

(x− j)ke−Tx dx =

−
k∑

l=0

l∑
j=0

(
k + 1

j

)
(−1)k+1−j

l+1∫
l

(x− j)ke−Tx dx =

= (−1)k
k∑

j=0

(
k + 1

j

)
(−1)j

k∑
l=j

l+1∫
l

(x− j)ke−Tx dx =

= (−1)k
k∑

j=0

(
k + 1

j

)
(−1)j

k+1∫
j

(x− j)ke−Tx dx =

= −
k+1∑
j=0

(
k + 1

j

)
(−1)k+1−j

k+1∫
j

(x− j)ke−Tx dx .
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Integration by parts yields

k+1∫
j

(x− j)ke−Tx dx =

[
(x− j)ke−Tx

−T

]k+1

j

+
k

T

k+1∫
j

(x− j)k−1e−Tx dx =

=
(k + 1− j)ke−(k+1)T

−T +
k

T

k+1∫
j

(x− j)k−1e−Tx dx ,

for k ≥ 1. Continuing this process we arrive at

ĝ(w) =

k+1∑
j=0

(
k + 1

j

)
(−1)k+1−j

k∑
i=0

k!

(k − i)!

(k + 1− j)k−ie−(k+1)T

T i+1
−

−
k+1∑
j=0

(
k + 1

j

)
(−1)k+1−j k!

T k+1
e−jT =

=

k∑
i=0

k!

(k − i)!

1

T i+1
e−(k+1)T

k+1∑
j=0

(
k + 1

j

)
(−1)k+1−j(k + 1− j)k−i−

− k!

T k+1

k+1∑
j=0

(
k + 1

j

)
(−1)k+1−j

(
e−T

)j
= − k!

T k+1

(
e−T − 1

)k+1
.

Here we used again, that by (6)

k+1∑
j=0

(
k + 1

j

)
(−1)k+1−j(k + 1− j)k−i = 0 .

Returning to the original notation we have that

(18) C(fk)(w) = −
k!

(iw − λ)k+1
,

and this implies our statement. The theorem is proved. �

5. Relation between the Carleman transform and
the Fourier transform

Using the initial of the name of Kahane here we introduce the K-mean of a
mean periodic function f . In [6] it is proved that for a complex number λ the



280 L. Székelyhidi

exponential monomial x �→ p(x)eλx belongs to τ(f) if and only if λ is a pole of
order at least n of C(f), where n is the degree of the polynomial p. As C(f) is
meromorphic, each pole of it is of finite order. Consider the case λ = 0. If 0 is
not a pole of C(f), then no nonzero polynomial belongs to τ(f). In particular,
the function 1 does not belong to τ(f). In this case let K(f) = 0, the zero
polynomial. Suppose now that 0 is a pole of C(f). Let n ≥ 1 denote the order
of this pole, and define the polynomial K(f) of degree n−1 as follows: for each
real x let

(19) K(f)(x) = −
n−1∑
k=0

ik+1 ck+1

k!
xk ,

where ck denotes the coefficient of w−k in the polar part of the Laurent series
expansion of C(f) around w = 0 (k = 0, 1, . . . , n− 1).

By Theorem 10. we have the following basic result.

Theorem 11. For each polynomial p we have

(20) K(p) = p .

Proof. Formula (18) gives the result with λ = 0 for the polynomial
x �→ xk for each natural number k. The general case follows by linearity. �

Using again equation (18) and linearity we have the extension of the previ-
ous theorem.

Theorem 12. Let ϕ be an exponential polynomial of the form (9). Then we
have

(21) K(ϕ) = p0 .

Another basic property of the K-transform is expressed by the following
theorem.

Theorem 13. The K-transformation is a continuous linear mapping from
MP(R) into P(R), which commutes with all translations.

Proof. By the definition of C(f) the K-transformation is clearly linear.

For the proof of continuity we remark that the mapping f �→ f− and
hence also f �→ g and f �→ C(f) are continuous on MP(R). Finally, the
coefficients ck of the Laurent expansion of C(f) can be expressed — by Cauchy’s
integral formulas — by path integrals which can be interchanged with taking
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uniform limits over compact sets. Hence the K-transformation is continuous
from MP(R) into P(R).

Let ϕ be an exponential polynomial of the form (9) and y be real number.
Then, by Theorems 11. and 12., we have

τy K(ϕ)(x) = K(ϕ)(x+ y) = p0(x+ y) = K(τyϕ)(x)

for each real x. Hence the K-transformation commutes with all translations
on the exponential polynomials. By the spectral synthesis result Theorem 1,
exponential polynomials form a dense subset in τ(f) for each mean periodic f ,
hence, by continuity, the theorem is proved. �

Our main theorem follows.

Theorem 14. For each mean periodic function f we have

(22) K(f) = M(f) .

Proof. In [10] we have shown (see Theorem 4.2.5 on p. 64) that linearity
and continuity together with the property of commuting with translations and
leaving polynomials fixed characterize the operator M among the mappings
fromMP(R) into P(R). As we have seen in the previous theorems the operator
K shares these properties with M , hence they are identical. �

6. Fourier series and convergence

In (11) we have seen that if f is an exponential polynomial, then we have
the representation

(23) f(x) =
∑
λ∈C

f̂(λ)(x) eλx .

This is a finite sum because f̂(λ) = 0 if λ does not belong to the spectrum of
f , and the spectrum is finite. The question arises: if f is an arbitrary mean
periodic function, does a similar - not necessarily finite - sum converge to f in
some sense? The answer is clearly negative even in the case of periodic functions
but still we can get a kind of convergence in a special class of measures.

The measure (or compactly supported distribution) μ is called slowly de-
creasing if there are constants A,B, ε > 0 such that

max{|μ̂(y)| : y ∈ R, |x− y| ≤ A ln(2 + |x|)} ≥ ε(1 + |x|)−B .
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For instance, if μ̂ is a nonzero exponential polynomial, then μ is slowly decreas-
ing.

We shall formulate a convergence theorem for another class of mean periodic
functions, namely for C∞-mean periodic functions. Let E(R) denote the space
C∞(R) with the usual topology of uniform convergence of all derivatives over
compact subsets. This is a locally convex topological vector space and its
dual is the space of all compactly supported distributions. If μ is a compactly
supported distribution and f is in E(R) satisfying

f ∗ μ = 0 ,

then f is called mean periodic with respect to μ, or simply mean periodic. Now
we can formulate a convergence theorem for Fourier series.

Theorem 15 (L. Ehrenpreis, 1960). Let μ be a slowly decreasing compactly
supported distribution and let f be a mean periodic function with respect to μ
in E(R). Then there are finite disjoint subsets Vk (k = 1, 2, . . . ) of sp(f) such
that

⋃
k Vk = sp(f) and the series

∞∑
k=1

∑
λ∈Vk

f̂(λ)(x) eλx

converges to f in E(R).

We note that continuous mean periodic functions can be approximated very
well by mean periodic functions in E(R). Indeed, let

χε(x) =
1

ε
χ
(x
ε

)
,

where χ is a compactly supported C∞ function. Then fε = χε ∗ f tends to f
in E(R). Further fε satisfies the same equation as f :

fε ∗ μ = (χε ∗ f) ∗ μ = χε ∗ (f ∗ μ) = 0 .

Hence the theory of continuous mean periodic functions can be reduced to the
theory of C∞-mean periodic functions.
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L. Székelyhidi
Department of Analysis
Institute of Mathematics
University of Debrecen
H-4010 Debrecen, P.O.Box 12.
Hungary
lszekelyhidi@gmail.com





Annales Univ. Sci. Budapest., Sect. Comp. 35 (2011) 285–304
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Abstract. The sequence of certain arithmetic means of the Lagrange
interpolation on the roots of Laguerre polynomials is shown to be uniformly
convergent in suitable weighted function spaces.

1. Introduction

Let wα(x) := xαe−x (x ∈ R+ := (0,+∞), α > −1) be a Laguerre weight
and denote by Un(wα) (n ∈ N := {1, 2, . . .}) the root system of pn(wα) (n ∈
∈ N0 := {0, 1, . . .}) (orthonormal polynomials with respect to the weight wα).
We shall consider a Fejér type summation of Lagrange interpolation on Un(wα)
(n ∈ N). The corresponding polynomials will be denoted by σn

(
f, Un(wα), ·

)
(see (2.8)).

The goal of this paper is to give conditions for the parameters α > −1, γ ≥ 0
ensuring

lim
n→+∞

∥∥(f − σn

(
f, Un(wα), ·

))√
wγ

∥∥
∞ = 0

for all f ∈ C√
wγ

(see Section 2.1), where ‖ · ‖∞ denotes the maximum norm.
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2. Notations and preliminaries

We are going to summarize definitions and statements on function spaces,
weighted approximation, weighted Lagrange interpolation, which we shall need
in the following sections.

2.1. Some weighted uniform spaces. Setting

wγ(x) := xγe−x (x ∈ R+
0 := [0,+∞), γ ≥ 0),

we define the weighted functional space C√
wγ

as follows:

i) for γ > 0, f ∈ C√
wγ iff f is a continuous function in any segment

[a, b] ⊂ R+ and

lim
x→0+0

f(x)
√
wγ(x) = 0 = lim

x→+∞ f(x)
√
wγ(x);

ii) for γ = 0, f ∈ C√
w0

iff f is continuous in [0,+∞) and

lim
x→+∞ f(x)

√
w0(x) = 0.

In other words, when γ > 0, the function f in C√
wγ

could take very large values,
with polynomial growth, as x approaches zero from the right, and could have
an exponential growth as x→ +∞.

If we introduce the norm

‖f‖√wγ :=
∥∥f√wγ

∥∥
∞ := max

x∈R+
0

∣∣f(x)∣∣√wγ(x),

in C√
wγ

, γ ≥ 0, then we get the Banach space
(
C√

wγ
, ‖ · ‖√wγ

)
.

2.2. Weighted polynomial approximation. We recall two fundamental
results with respect to the polynomial approximation in the function space(
C√

wγ
, ‖ · ‖√wγ

)
.

The first fact is that the set of polynomials are dense in the function space(
C√

wγ
, ‖ · ‖√wγ

)
. More precisely, if we denote by Pn the linear space of all

polynomials of degree at most n and by

En(f,
√
wγ) := inf

P∈Pn

‖(f − P )
√
wγ‖∞ = inf

P∈Pn

‖f − P‖wγ
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the best polynomial approximation of the function f ∈ C√
wγ

, then we have

lim
n→+∞En(f,

√
wγ) = 0

(see for example [9, p. 11] and [1, p. 186]).

The second fact is associated with the Mhaskar–Rahmanov–Saff number :
For every γ ≥ 0 and n ∈ N there are positive real numbers an := an(γ) and
bn := bn(γ) such that for any polynomial P ∈ Pn we get

(2.1) ‖P‖√wγ
= ‖P√wγ‖∞ = max

x∈R+
0

∣∣P (x)
∣∣√wγ(x) = max

an≤x≤bn

∣∣P (x)
∣∣√wγ(x)

and

‖P√wγ‖∞ >
∣∣P (x)

∣∣√wγ(x) for all 0 ≤ x < an and bn < x.

Moreover, for every γ ≥ 0 and n ∈ N we have

an : = an(γ) = (2n+ γ)

(
1−

√
1− γ2

(γ + 2n)2

)
>

γ2

4n+ 2γ
,

bn : = bn(γ) = (2n+ γ)

(
1 +

√
1− γ2

(γ + 2n)2

)
= 4n+ 2γ +

C

n

(2.2)

with a constant C > 0 independent of n (see for example [6, (2.1)]).

2.3. Weighted Lagrange interpolation. Let

pn(wα, x) (x ∈ R+
0 , n ∈ N0, α > −1)

be the sequence of orthonormal Laguerre polynomials with positive leading
coefficients. Let us denote by

(2.3) Un(wα) := {yk,n := yk,n(wα) | k = 1, 2, . . . , n} (n ∈ N)

the n different roots of pn(wα, ·). We index them as

0 < y1,n(wα) < y2,n(wα) < · · · < yn−1,n(wα) < yn,n(wα) <∞.

For a given function f : R+
0 → R we denote by Ln(f, Un(wα), ·) the Lagrange

interpolatory polynomial of degree ≤ n− 1 at the zeros of pn(wα), i.e.

Ln (f, Un(wα), yk,n) = f(yk,n) (k = 1, 2, . . . , n).
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We have

Ln (f, Un(wα), x) =

n∑
k=1

f(yk,n)�k,n (Un(wα), x)

(x ∈ R+
0 , n ∈ N),

where

�k,n (Un(wα), x) =
pn(wα, x)

p′n(wα, yk,n)(x− yk,n)

(x ∈ R+
0 ; k = 1, 2, . . . , n; n ∈ N)

are the fundamental polynomials associated with the nodes Un(wα).

Consider the (uniform) convergence of the sequence Ln

(
f, Un(wα), ·

)
(n ∈ N) in the Banach space

(
C√

wγ
, ‖ · ‖√wγ

)
. In other words, for a func-

tion f ∈ C√
wγ

we have to investigate the real sequence

�n(f) :=
∥∥∥(f − Ln

(
f, Un(wα), ·

))√
wγ

∥∥∥
∞

(n ∈ N).

In other words, we approximate the function f
√
wγ by the weighted Lagrange

interpolatory polynomials

(2.4) Ln

(
f, Un(wα), x

)√
wγ(x) (x ∈ R+

0 , n ∈ N).

The main question is: is it true that �n(f) → 0 (n → +∞) for all f ∈ C√
wγ

or not?

The classical Lebesgue estimate for the weighted Lagrange interpolation is
the following: take the best uniform approximation Pn−1(f) to f ∈ Cwγ

(the
existence of such a Pn−1(f) is obvious), and consider∣∣∣f(x)− Ln

(
f, Un(wα), x

)∣∣∣√wγ(x) ≤

≤
∣∣∣f(x)− Pn−1(f, x)

∣∣∣√wγ(x) +
∣∣∣Ln

(
f − Pn−1(f), Un(wα), x

)∣∣∣√wγ(x) ≤

≤ En−1

(
f,
√
wγ

)(
1 +

n∑
k=1

∣∣∣�k,n(Un(wα, x)
)∣∣∣ √

wγ(x)√
wγ(yk,n)

)
.

This estimate shows that the pointwise/uniform convergence of the sequence
(2.4) depends on the orders of the weighted Lebesgue functions:

λn

(
Un(wα),

√
wγ , x

)
:=

n∑
k=1

∣∣∣�k,n(Un(wα, x)
)∣∣∣ √

wγ(x)√
wγ(yk,n)

(x ∈ R+
0 , n ∈ N),
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and on the orders of the weighted Lebesgue constants :

Λn

(
Un(wα),

√
wγ

)
:= sup

x∈R+
0

λn

(
Un(wα),

√
wγ , x

)
(n ∈ N).

It is clear that for all γ ≥ 0, α > −1 and n ∈ N

(2.5)
Ln(·, Un(wα),

√
wγ) :

(
C√

wγ
, ‖ · ‖√wγ

)
→ Pn−1 ⊂

(
C√

wγ
, ‖ · ‖√wγ

)
Ln(f, Un(wα),

√
wγ) := Ln

(
f, Un(wα), ·

)
is a bounded linear operator and its norm is

‖Ln(·, Un(wα),
√
wγ)‖ : = sup

0 �≡f∈C√
wγ

‖Ln(f, Un(wα),
√
wγ)‖√wγ

‖f‖√wγ

=

= sup
0 �≡f∈Cwγ

‖Ln

(
f, Un(wα), ·

)√
wγ‖∞

‖f√wγ‖∞
.

Since

Ln

(
f, Un(wα), x

)
=

n∑
k=1

f(yk,n)�k,n
(
Un(wα), x

)
=

=
n∑

k=1

f(yk,n)
√
wγ(yk,n) · �k,n

(
Un(wα), x

)
· 1√

wγ(yk,n)
,

thus by a usual argument we have that the norm of the operator (2.5) equals
to the n-th Lebesgue constant, i.e.∥∥Ln(·, Un(wα),

√
wγ)

∥∥ = Λn

(
Un(wα),

√
wγ

)
(n ∈ N).

The pointwise/uniform convergence of Ln(f, Un(wα), ·) (n ∈ N) in different
function spaces were investigated by several authors (see [3], [8], [6]). For
example in 2001, G. Mastroianni and D. Occorsio showed that for arbitrary
γ ≥ 0 and α > −1 the order of the norm of the operator Ln(·, Un(wα),

√
wγ)

is n1/6 (see [6, Theorem 3.3]), i.e.

‖Ln(·, Un(wα),
√
wγ)‖ ∼ n1/6 (n ∈ N).

Here and in the sequel, if A and B are two expressions depending on certain
indices and variables, then we write

A ∼ B, if and only if 0 < C1 ≤
∣∣∣∣AB

∣∣∣∣ ≤ C2

uniformly for the indices and variables considered.
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From results of P. Vértesi it follows that for any interpolatory matrix Xn ⊂
⊂ R+

0 (n ∈ N) the order of the corresponding weighted Lebesgue constants is
at least log n, i.e. if γ ≥ 0 and Xn ⊂ R+ (n ∈ N) is an arbitrary interpolatory
matrix then there exists a constant C > 0 independent of n such that

Λn(Xn,
√
wγ) = ‖Ln(·, Xn,

√
wγ)‖ ≥ C log n (n ∈ N).

See [16, Theorem 7.2], [14] and [15]. Thus using the Banach–Steinhaus theorem
we obtain the following Faber type result:

Theorem A. If γ ≥ 0 and Xn ⊂ R+ (n ∈ N) is an arbitrary interpolatory
matrix then there exists a function f ∈ C√

wγ
for which the relation∥∥(f − Ln(f,Xn, ·))

√
wγ

∥∥
∞ → 0 as n→ +∞

does not hold.

In [6] G. Mastroianni and D. Occorsio also proved that there exist point
systems for which the optimal Lebesgue constants can be attained. We recall
only the following result:

Theorem B (see [6, Theorem 3.4]). If Vn+1 := Un(wα) ∪ {4n}, then

‖Ln+1

(
·,Vn+1,

√
wγ

)
‖ = Λn+1

(
Vn+1,

√
wγ

)
∼ log n (n ∈ N)

if and only if the parameters α > −1 and γ ≥ 0 satisfy the additional conditions:

α

2
+

1

4
≤ γ ≤ α

2
+

5

4
.

2.4. Fejér type sums. Using the Christoffel–Darboux formula [12, The-
orem 3.2.2] we write the Lagrange interpolatory polynomials as

(2.6) Ln

(
f, Un(wα), x

)
=

n−1∑
l=0

cl,n(f)pl(wα, x) (x ∈ R+
0 , n ∈ N),

where

(2.7) cl,n(f) :=

n∑
k=1

f(yk,n)pl (wα, yk,n)λk,n (l = 0, 1, . . . , n− 1, n ∈ N).

Here and in the sequel λk,n := λk,n(wα) (k = 1, 2, . . . , n, n ∈ N) denote the
Christoffel numbers with respect to the weight wα (cf. [12, (15.3.5)]).
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Using (2.6) and (2.7) we have

Ln(f, x) : = Ln

(
Un(wα), f, x

)
=

n−1∑
l=0

cl,n(f)pl(wα, x) =

=
n∑

k=1

f (yk,n)Kn−1 (x, yk,n)λk,n,

where

Kn−1(x, y) :=

n−1∑
l=0

pl (wα, x) pl (wα, y)(
x, y ∈ R+

0 , n ∈ N
)
.

Let

Ln,m(f, x) :=

m∑
l=0

cl,n(f)pl(wα, x) =

n∑
k=1

f (yk,n)Km (x, yk,n)λk,n(
x ∈ R+

0 , m = 0, 1, . . . , n− 1, n ∈ N
)
.

The Fejér means of the Lagrange interpolation of the function f : R+
0 → R are

defined as the arithmetic means of the sums Ln,0, Ln,1, . . ., Ln,n−1, i.e.

(2.8)

σn(f, x) := σn

(
f, Un(wα), x

)
:=

:=
Ln,0(f, x) + Ln,1(f, x) + · · ·+ Ln,n−1(f, x)

n

(x ∈ R+
0 , n ∈ N).

From the above formulas we have

σn(f, x) =

n−1∑
l=0

(
1− l

n

)
cl,n(f)pl(wα, x) =

=
n∑

k=1

f(yk,n)
{ 1

n

n−1∑
m=0

Km(x, yk,n)
}
λk,n =

=

n∑
k=1

f(yk,n)K
(1)
n (x, yk,n)λk,n,

(2.9)

where

(2.10)
K(1)

n (x, y) :=
1

n

n−1∑
m=0

Km(x, y) =

n−1∑
l=0

(
1− l

n

)
pl(wα, x)pl(wα, y)(

x, y ∈ R+
0 , n ∈ N

)
.
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Remark 1. It is important to observe that we defined the Fejér means of
Lagrange interpolation by considering the means (2.8) and not by the means

(2.11)
L0(f, x) + L1(f, x) + · · ·+ Ln−1(f, x)

n
(x ∈ R+

0 , n ∈ N).

Several earlier results suggest that the two methods (2.8) and (2.11) have dif-
ferent behavior with respect to uniform convergence.

For example in the trigonometric case J. Marcinkiewicz [4] proved that the
method corresponding to (2.8) is uniformly convergent in C2π (the Banach
space of 2π periodic continuous functions defined on R endowed with the max-
imum norm), moreover there exists a function f ∈ C2π such that the sequence
corresponding to (2.11) diverges at a point. In other words we have an analogue
of the classical theorem of L. Fejér about the uniform convergence of the (C, 1)
means of the partial sums of the trigonometric Fourier series only for suitable
arithmetic means of the Lagrange interpolation.

The situation is similar if we consider the Lagrange interpolation on the
roots of the Chebyshev polynomials of the first kind. In [13] A.K. Varma and
T.M. Mills showed that the (2.8) type means of the Lagrange interpolation
uniformly convergent for every f ∈ C[−1, 1]. Moreover in [2] P. Erdős and
G. Halász proved that there exists a continuous function for which the (2.11)
type means are almost everywhere divergent on the interval [−1, 1].

3. Uniform convergence of suitable arithmetic means

The main goal of this paper is to show that the (2.8) type arithmetic means
of the Lagrange interpolation on the roots of Laguerre polynomials is uniformly
convergent in suitable weighted function spaces.

Theorem. Let α > −1 and 0 ≤ γ =: α + 2r, i.e.
√
wγ(x) =

√
wα(x)x

r

(x ∈ R+). If

(3.1) −min

(
α

2
,
1

4

)
< r ≤ 7

6
,

then

(3.2) lim
n→+∞

∥∥∥(f − σn(f, Un(wα), ·)
)√

wγ

∥∥∥
∞

= 0

holds for all f ∈ C√
wγ

.
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Remark 2. We intend to investigate the convergence of the method (2.11)
in a subsequent paper.

Remark 3. The formulas (2.6) and (2.7) show that the Lagrange interpo-
lation polynomials on the roots of Laguerre polynomials can be considered as a
discrete version of partial sums of the Fourier series with respect to the system
of Laguerre polynomials. In [9] E.L. Poiani proved (among other things) that
the sequence of the (C, 1) means of the Laguerre series of an arbitrary function
f ∈ Cwγ

(γ = 2r + α, α > −1) converges to f in the space
(
Cwγ ,‖·‖wγ

)
, if

−min

(
α

2
,
1

2

)
< r < 1 + min

(
α

2
,
1

4

)
and − 1

2
≤ r ≤ 7

6
.

4. Proof of the Theorem

4.1. Laguerre polynomials. We mention some relations with respect to
the Laguerre polynomials which will be used later. Let {pn(wα)}, α > −1,
be the sequence of orthonormal Laguerre polynomials with positive leading
coefficients. The zeros yk,n := yk,n(wα) of pn(wα), n ≥ 1 satisfy

(4.1)
C1

n
< y1,n < y2,n < . . . < yn,n = 4n+ 2α+ 2− C2

3
√
4n,

(4.2) yk,n ∼
k2

n
(k = 1, 2, . . . , n, n ∈ N)

(see [12, Section 6.32] and [5, Section 2.3.5]).

Here and what follows C,C1, . . . will always denote positive constants (not
necessarily the same at each occurrence) being independent of parameters k
and n.

It is known that

(4.3)
!yk,n := yk+1,n − yk,n ∼

√
yk,n

4n− yk,n

(k = 1, 2, . . . , n− 1, n ∈ N),

and for yk,n ≤ x ≤ yk+1,n (k = 1, 2, . . . , n− 1) we have√
yk,n

4n− yk,n
∼
√

x

4n− x
∼
√

yk+1,n

4n− yk+1,n
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uniformly in k and n (see [6, (2.4) and (2.5)]). From (4.2) and (4.3) it follows
that

(4.4) |yj,n − yk,n| ≥ C
|j2 − k2|

n
(j, k = 1, 2, . . . , n).

For the Christoffel numbers we have

(4.5) λk,n := λk,n(wα) ∼ wα(yk,n)

√
yk,n

4n− yk,n
∼ wα(yk,n)!yk,n

uniformly in k = 1, 2, . . . , n and n ∈ N (see [6, (2.7)]).

In an article of B. Muckenhoupt and D.W. Webb [7] there is a pointwise
upper estimate for the kernel of (C, δ) (δ > 0) Cesàro means of Laguerre–
Fourier series (see also [17]). We shall use this result only with respect to (C, 1)

means, that is for the kernel function K
(1)
n (x, y) (see (2.10)): Let α > −1. Then

we have

(4.6)

∣∣∣K(1)
n (x, y)

∣∣∣ ≤ C√
wα(x)

√
wα(y)

Gn(x, y)

(0 < x, y < ν(n) + 3
√
ν(n), n ∈ N),

where ν := ν(n) := 4n+ 2α+ 2,

(4.7)

Gn(x, y) :=

:=
1

ν
Mn(x)Mn(y)

(x+ y)
[
ν1/3 + |x− ν|+ |y − ν|

]2
(x+ y) + (x− y)2

[
ν1/3 + |x− ν|+ |y − ν|

]
and

(4.8) Mn(x) :=
xα/2

(
x+ 1

ν

)−α/2−1/4

4
√
ν1/3 + |x− ν|

(see [7, p. 1124]).

Denote by yj,n one of the closest root(s) to x (shortly x ≈ yj,n, j = j(n)).
Using the above relations we obtain that

(4.9) Mn(x) ∼Mn(yj,n) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1√
j
, if

c

n
≤ x ≤ ν

2

1
4
√
n|yj,n − ν|

, if
ν

2
≤ x ≤ ν − 3

√
ν

1
3
√
n
, if ν − 3

√
ν ≤ x ≤ ν + 3

√
ν

for x ∈ [c/n, ν + 3
√
ν].
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4.2. Uniform boundedness. Let us consider for every n ∈ N the bounded
linear operator

Fn :
(
C√

wγ , ‖ · ‖√wγ

)
→ Pn ⊂

(
C√

wγ , ‖ · ‖√wγ

)
Fnf := σn(f, Un(wα), ·).

For the norm of the operator Fn we obtain that (see (2.9))

‖Fn‖ := sup
0 �≡f∈C√

wγ

‖Fnf‖√wγ

‖f‖√wγ

= sup
0 �≡f∈C√

wγ

∥∥σn

(
f, Un(wα), ·

)√
wγ

∥∥
∞∥∥f√wγ

∥∥
∞

=

= max
x∈R+

0

n∑
k=1

∣∣K(1)
n (x, yk,n)

∣∣ √
wγ(x)√

wγ(yk,n)
λk,n.

The core of the proof of the Theorem is contained in the following lemma,
which states the uniform boundedness of the operator sequence (Fn).

Lemma 4.1. Let α > −1 and r satisfy the inequality (3.1). Then there
exists a constant C > 0 independent of n ∈ N such that

(4.10) ‖Fn‖ = max
x∈R+

0

n∑
k=1

∣∣K(1)
n (x, yk,n)

∣∣ √
wα(x)√

wα(yk,n)

( x

yk,n

)r

λk,n ≤ C.

Proof. We shall use the following important equality (see [11, Lemma 1]): If
γ ≥ 0, m ≤ n ∈ N and qk ∈ Pn (k = 1, 2, . . . ,m) are arbitrary polynomials
then

max
x∈R+

0

[√
wγ(x)

m∑
k=1

|qk(x)|
]
= max

an≤x≤bn

[√
wγ(x)

m∑
k=1

|qk(x)|
]
.

Therefore by (4.5)–(4.7) it is enough to show that

(4.11) max
an≤x≤bn

n∑
k=1

Gn(x, yk,n)

(
x

yk,n

)r √
yk,n

4n− yk,n
≤ C,

where
c

n
≤ an = an(γ) ≤ x ≤ bn = bn(γ) < ν + 3

√
ν.

In order to prove (4.11), we distinguish several cases.
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Case 1: Let x ∈ [an,
ν
2 ] and

(4.12)

n∑
k=1

Gn(x, yk,n)

(
x

yk,n

)r √
yk,n

4n− yk,n
=

∑
yk,n≤ ν

2

. . .+
∑

yk,n>
ν
2

. . . =: A(1)
n (x) +A(2)

n (x).

Since ν1/3 + |x − ν| + |yk,n − ν| ∼ n (k = 1, 2, . . . , n, n ∈ N) thus by (4.2),
(4.4), (4.7) and (4.9) we have

A(1)
n (x) ≤ C1

∑
yk,n≤ ν

2

n
j2 + k2

j2 + k2 + |j2 − k2|2
1√
kj

(
j

k

)2r
k

n
≤

≤ C2

⎧⎨⎩∑
k≤ j

2

j2r−5/2

k2r−1/2
+

∑
j
2≤k≤2j

1

1 + (k − j)2
+

∑
k≥2j

j2r−1/2

k2r+3/2

⎫⎬⎭ .

The second sum is bounded. For the first sum we obtain that

∑
k≤j/2

j2r−5/2

k2r−1/2
∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

log j

j
, if r =

3

4

j2r−5/2, if r >
3

4

1

j
, if r <

3

4

and these expressions are bounded (independently of j and n), if r ≤ 5/4.
Moreover by

n∑
k=j

1

ks
∼

⎧⎨⎩log n
j , if s = 1∣∣n−s+1 − j−s+1

∣∣ , if s �= 1

we have

∑
k≥2j

j2r−1/2

k2r+3/2
∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log n

j

j
, if r = −1

4

1

j

∣∣∣( j

n

)2r+1/2

− 1
∣∣∣, if r �= −1

4

whence the third sum is bounded (independently of j and n), if r > − 1
4 .

Therefore

(4.13) A(1)
n (x) ≤ C

(
x ∈ [an,

ν
2 ], n ∈ N

)
, if − 1

4 < r ≤ 5
4 .
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Let us consider A
(2)
n (x). Since yk,n ≥ ν

2 thus by (4.2), (4.4), (4.7) and (4.9)
we have

(4.14)

A(2)
n (x) ≤

≤ C1

∑
yk,n≥ ν

2

n

1 + |yj,n − yk,n|2
1√
j

1
4
√
n|yk,n − ν|

(
j

k

)2r √
yk,n

4n− yk,n
≤

≤ C2

{ ∑
ν
2≤yk,n≤ x+yn,n

2

· · ·+
∑

x+yn,n
2 <yk,n

· · ·
}

=:

=: A(21)
n (x) +A(22)

n (x).

If ν
2 ≤ yk,n ≤ x+yn,n

2 then |yk,n − ν| ∼ n thus by (4.2) and (4.4) we obtain
that

A(21)
n (x) ≤ C1

(
j

n

)2r−1/2 ∑
ν
2≤yk,n≤ x+yn,n

2

1

1 + |k − j|2 .

If x ≈ yj,n ≤ ν
4 and yk,n ≥ ν

2 then |k − j| ≥ cn therefore in this case

A(21)
n (x) ≤ C

1

j

(
j

n

)2r+1/2

,

which is bounded (independently of j and n), if r ≥ − 1
4 . Moreover, if x ≈ yj,n ≥

≥ ν
4 then j ∼ n hence A

(21)
n is bounded for all r.

If yk,n ≥ (x + yn,n)/2 then |yj,n − yk,n| ∼ n thus by (4.3) and (4.14) we
obtain that

A(22)
n (x) ≤ C1

j2r−1/2

n2r+5/4

∑
x+yn,n

2 ≤yk,n

!yk,n
4
√
|yk,n − ν|

≤

≤ C2
j2r−1/2

n2r+5/4

∫ yn,n

ν/2

1
4
√
ν − t

dt ≤

≤ C3
j2r−1/2

n2r+5/4
n3/4 = C3

(
j

n

)2r+1/2
1

j
,

and this is bounded, if r ≥ − 1
4 . Consequently

(4.15) A(2)
n (x) ≤ C

(
x ∈

[
an,

ν
2

]
, n ∈ N

)
, if − 1

4 ≤ r.
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By (4.13)–(4.15) we get: there exists a constant C > 0 independent of x and n
such that

(4.16) A(1)
n (x) +A(2)

n (x) ≤ C
(
x ∈

[
an,

ν
2

]
, n ∈ N

)
if − 1

4 < r ≤ 5
4 .

Case 2: Let x ∈ [ 12ν,
3
4ν] and

(4.17)

n∑
k=1

Gn(x, yk,n)

(
x

yk,n

)r √
yk,n

4n− yk,n
=

=
∑

yk,n≤ ν
4

. . .+
∑

ν
4<yk,n≤ 7

8 ν

. . .+
∑

7
8 ν<yk,n

. . . =:

:= B(1)
n (x) +B(2)

n (x) +B(3)
n (x).

If x ∈ [ ν2 ,
3
4ν] and yk,n ≤ ν

4 then |x− yk,n| ∼ n therefore by (4.7) and (4.9) we
get

B(1)
n (x) ≤ C1

∑
yk,n≤ ν

4

1

n

nn2

n+ n2n

1√
n

1√
k

(n
k

)2r k

n
≤

≤ C2

n∑
k=1

n2r−5/2

k2r−1/2
∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

log n

n
, if r =

3

4

n2r−5/2, if r >
3

4

1

n
, if r <

3

4

and this is bounded, if r ≤ 5
4 .

If x ∈ [ ν2 ,
3
4ν] and

ν
4 ≤ yk,n ≤ 7

8ν then

|x− yk,n| ≥ c1
|j2 − k2|

n
≥ c2|j − k|

(see (4.4)) thus by (4.7) and (4.9) we have

B(2)
n (x) ≤ C1

∑
ν
4≤yk,n≤ 7

8 ν

1

n

nn2

n+ |j − k|2n
1√
n

1√
n
≤ C2

n∑
k=1

1

1 + |j − k|2 ,

i.e. this term is bounded for all r.
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If x ∈ [ 12ν,
3
4ν] and yk,n ≥ 7

8ν then |x− yk,n| ≥ cn thus

B(3)
n (x) ≤ C1

∑
7
8 ν≤yk,n

1

n

nn2

n+ n2n

1√
n

1
4
√
n|yk,n − ν|

√
yk,n

4n− yk,n
≤

≤ C2

n7/4

∫ yn,n

7
8 ν

1
4
√
ν − t

dt ≤ C3
n3/4

n7/4

which means that this term is also bounded for all r.

Consequently there exists a constant C > 0 independent of x and n such
that

(4.18) B(1)
n (x) +B(2)

n (x) +B(3)
n (x) ≤ C

(
x ∈

[
1
2ν,

3
4ν
]
, n ∈ N

)
, if r ≤ 5

4 .

Case 3: Let x ∈ [ 34ν, yn,n] and

(4.19)

n∑
k=1

Gn(x, yk,n)

(
x

yk,n

)r √
yk,n

4n− yk,n
=

=
∑

yk,n≤ 5ν
8

. . .+
∑

5ν
8 <yk,n<yj−1,n

. . .+

j+1∑
k=j−1

. . .+
∑

yj+1,n<yk,n<
x+yn,n

2

. . .+

+
∑

x+yn,n
2 ≤yk,n

. . . =:

=: D(1)
n (x) +D(2)

n (x) +D(3)
n (x) +D(4)

n (x) +D(5)
n (x).

If yk,n ≤ 5
8ν then |x − yk,n| ∼ n and |yj,n − ν| ≥ c 3

√
n therefore by (4.7) and

(4.9) we get

D(1)
n (x) ≤ C1

∑
y
k,n≤ 5ν

8

1

n

nn2

n+ n2n

1
4
√
n|yj,n − ν|

1√
k

(n
k

)2r k

n
≤

≤ C2

n∑
k=1

n2r−7/3

k2r−1/2
∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

log n

n5/6
, if r =

3

4

n2r−7/3, if r >
3

4

n−5/6, if r <
3

4

and this is bounded, if r ≤ 7
6 .
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If x ∈ [ 34ν, yn,n] and
5
8ν ≤ yk,n < yj−1,n then

ν1/3 + |x− ν|+ |yk,n − ν| ∼ |yk,n − ν| ≥ c|yj,n − ν|,

|yk,n − ν| ≤ cn,

x− yj−2,n ≥ !yj−1,n ∼ !yj,n ∼
√

n

ν − yj,n

thus

D(2)
n (x) ≤ C1

∑
5ν
8 ≤yk,n<yj−1,n

1

n

n|yk,n − ν|2
n+ (x− yk,n)2|yk,n − ν|×

× 1
4
√
n|yj,n − ν|

1
4
√
n|yk,n − ν|

√
yk,n

4n− yk,n
≤

≤ C2

√
n

|yj,n − ν|
∑

5ν
8 ≤yk,n<yj−1,n

!yk,n
(x− yk,n)2

≤

≤ C3

√
n

|yj,n − ν|

∫ yj−2,n

5ν
8

1

(x− t)2
dt ≤ C3

√
n

|yj,n − ν|
1

x− yj−2,n
≤ C4,

which holds for all r.

Let us consider D
(3)
n (x). Using that ν1/3 + |x − ν| + |yj,n − ν| ∼ |yj,n − ν|

we get

1

n

n|yj,n − ν|2
n+ (x− yk,n)2|yj,n − ν|

1√
n|yj,n − ν|

√
yj,n

4n− yj,n
≤

≤ C1
|yj,n − ν|2

n3/2

√
n

|yj,n − ν| ≤ C2

hence D
(3)
n (x) is bounded for all r.

If x ∈ [ 34ν, yn,n] and yj+1,n < yk,n <
x+yn,n

2 then

|yj,n − yk,n| ≥ c1
|j2 − k2|

n
≥ c2|j − k|, |x− ν| ∼ |yk,n − ν| ∼ |yj,n − ν|
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thus

D(4)
n (x) ≤

≤ C1

∑
yj+1,n<yk,n≤ x+yn,n

2

1

n

n|x− ν|2
n+ (yj,n − yk,n)2|x− ν|

1√
n|x− ν|

√
n

|x− ν| ≤

≤ C2

n∑
k=j+1

1

(j − k)2
≤ C3,

which holds for all r.

Finally let x ∈ [ 34ν, yn,n] and
x+yn,n

2 ≤ yk,n. Then

ν1/3 + |x− ν|+ |yk,n − ν| ∼ |x− ν|, |x− yk,n| ≥
|x− ν|

2
, |yj,n − ν| ≥ c 3

√
n.

Thus

D(5)
n (x) ≤ C1

∑
x+yn,n

2 ≤yk,n

1

n

n|x− ν|2
n+ (x− yk,n)2|x− ν|×

× 1
4
√
n|yj,n − ν|

1
4
√
n|yk,n − ν|

√
yk,n

4n− yk,n
≤

≤ C2
1√

n|yj,n − ν|5/4
∑

x+yn,n
2 ≤yk,n

!yk,n
4
√
ν − yk,n

≤

≤ C3

n11/12

∫ yn,n

x+yn,n
2

1
4
√
ν − t

dt ≤ C4
n3/4

n11/12
≤ C5

for all r.

Consequently there exists a constant C > 0 independent of x and n such
that

(4.20)

5∑
k=1

D(k)
n (x) ≤ C

(
x ∈

[
3
4ν, yn,n

]
, n ∈ N

)
, if r ≤ 7

6 .

Case 4: Let yn,n ≤ x ≤ bn(γ) ≤ ν + 3
√
ν and

(4.21)

n∑
k=1

Gn(x, yk,n)

(
x

yk,n

)r √
yk,n

4n− yk,n
=

=
∑

yk,n≤ ν
2

. . .+
∑

ν
2<yk,n

. . . =: E(1)
n (x) + E(2)

n (x).
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If yk,n ≤ ν
2 then (4.2), (4.7) and (4.9) yields

E(1)
n (x) ≤ C1

∑
yk,n≤ ν

2

1

n

n · n2

n+ n2 · n
1
3
√
n

1√
k

(n
k

)2r k

n
≤

≤ C2

n∑
k=1

n2r−7/3

k2r−1/2
∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

log n

n5/6
, if r =

3

4

n2r−7/3, if r >
3

4

n−5/6, if r <
3

4

which is bounded if r ≤ 7
6 .

Now let ν
2 ≤ yk,n < yn,n and x ∈ [yn,n, ν + 3

√
ν]. Then

|x− yk,n| ≥ c|yk,n − ν|.

Indeed, this is obvious if x ≥ ν. Moreover if x ∈ [yn,n, ν] then by (4.2) and
(4.3) we have

|yk,n − ν| = |x− yk,n|+ |x− ν| ≤ |x− yk,n|+ c1
3
√
n ≤

≤ |x− yk,n|+ c2|x− yn−1,n| ≤ c3|x− yk,n|.

Therefore

E(2)
n (x) ≤ C1

∑
ν
2≤yk,n<yn,n

1

n

n|yk,n − ν|2
n+ |x− yk,n|2|yk,n − ν|

1
3
√
n
×

× 1
4
√
n|yk,n − ν|

√
yk,n

4n− yk,n
+ C2

1

n

nn2/3

n

1
3
√
n

1
4
√
nn1/3

3
√
n ≤

≤ C3n
−7/12

∑
ν
2≤yk,n

!yk,n
|yk,n − ν|5/4 + C4 ≤

≤ C5n
−7/12

∫ yn,n

ν/2

1

(ν − t)5/4
dt+ C6 ≤ C7.

From the above relations it follows that there exists a constant C > 0
independent of x and n such that

(4.22) E(1)
n (x) + E(2)

n (x) ≤ C
(
x ∈ [yn,n, bn], n ∈ N

)
, if r ≤ 7

6 .

Combining (4.12)–(4.22) we get (4.11) so Lemma 4.1 is proved. �
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4.3. Finishing the proof. For the proof of the Theorem we use the
Banach–Steinhaus theorem.

Lemma 4.1 states that the sequence of the norm of operators Fn (n ∈ N)
is uniformly bounded.

Now we show that (3.2) holds for every polynomial. It is enough to prove
that for all fixed j = 0, 1, 2, . . .

(4.23) lim
n→+∞

∥∥∥(pj(wα)− σn(pj(wα), Un(wα), ·)
)√

wγ

∥∥∥
∞

= 0.

Using the quadrature formula for {pj := pj(wα)} (see [12, Section 3.1]) we have

cl,n(pj) =

n∑
k=1

pj(yk,n)pl(yk,n)λk,n = δl,j(
l, j = 0, 1, 2, . . . , n− 1, n ∈ N

)
.

Thus

pj − σn

(
pj , Un(wα)

)
=

(
1− j

n

)
pj ,

which proves (4.23).

Since the polynomials are dense in the Banach space
(
C√

wγ
, ‖ · ‖√wγ

)
(see

Section 2.2) thus the conditions of the Banach–Steinhaus theorem hold, so the
Theorem is proved. �
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RESTRICTED SUMMABILITY OF

MULTI-DIMENSIONAL

VILENKIN–FOURIER SERIES

F. Weisz (Budapest, Hungary)

Dedicated to Professor Antal Járai on his 60th birthday

Abstract. It is proved that the maximal operator of the (C,α) (α =
= (α1, . . . , αd)) and Riesz means of a multi-dimensional Vilenkin–Fourier
series is bounded from Hp to Lp (1/(αk +1) < p <∞) and is of weak type
(1, 1), provided that the supremum in the maximal operator is taken over
a cone-like set. As a consequence we obtain the a.e. convergence of the
summability means of a function f ∈ L1 to f .

1. Introduction

It can be found in Zygmund [16] (Vol. I, p.94) that the trigonometric Cesàro
or (C,α) means σα

nf (α > 0) of a one-dimensional function f ∈ L1(T) converge
a.e. to f as n → ∞. Moreover, it is known (see Zygmund [16, Vol. I, pp.
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Riesz summability, restricted convergence, cone-like sets.
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154-156]) that the maximal operator of the (C,α) means σα
∗ := supn∈N |σα

n | is
of weak type (1, 1), i.e.

sup
ρ>0

ρ λ(σα
∗ f > ρ) ≤ C‖f‖1 (f ∈ L1(T)).

For two-dimensional trigonometric Fourier series Marcinkiewicz and Zyg-
mund [6] proved that the Fejér means σ1

nf of a function f ∈ L1(T
2) converge

a.e. to f as n → ∞ in the restricted sense. This means that n must be in
a positive cone, i.e., 2−τ ≤ ni/nj ≤ 2τ for every i, j = 1, 2 and for some
τ ≥ 0. The author [13] extended this result to the (C,α) and Riesz means
of the trigonometric Fourier series for higher dimensions, too. We proved also
that the restricted maximal operator

σα
∗ := sup

2−τ≤ni/nj≤2τ

i,j=1,...,d

|σα
n |

is bounded fromHp to Lp for max{1/(αj+1)} < p <∞ where α = (α1, . . . , αd).
By interpolation we obtained the weak (1, 1) inequality for σα

∗ which guarantees
the preceding convergence results. Recently Gát [4] introduced more general
sets than cones, the so called cone-like sets, and proved the preceding conver-
gence theorem for two-dimensional Fejér means. The author [15] extended this
result to higher dimensions, to Cesàro and Riesz means and proved also the
above maximal inequality.

For one-dimensional Walsh–Fourier series the convergence result is due to
Fine [2] and the weak (1, 1) inequality for α = 1 to Schipp [7]. Fujii [3] proved
that σ1

∗ is bounded from H1 to L1 (see also Schipp, Simon [8]). For Vilenkin–
Fourier series the results are due to Simon [10]. The author [12, 14] proved the
convergence theorem and the maximal inequality mentioned above for multi-
dimensional Cesàro and Riesz means of Vilenkin–Fourier series, provided that
the n is in a cone.

More recently Gát and Nagy [5] extended the convergence for cone-like sets
and for two-dimensional Fejér means of Walsh-Fourier series. In this paper we
generalize the preceding results and prove the convergence and maximal in-
equality for cone-like sets and for Cesàro and Riesz means of more-dimensional
Vilenkin–Fourier series.

2. Martingale Hardy spaces and cone-like sets

For a set X �= ∅ let Xd be its Cartesian product X× . . .×X taken with itself
d-times. To define the d-dimensional Vilenkin systems we need a sequence
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p := (pn, n ∈ N) of natural numbers whose terms are at least 2. We suppose
always that this sequence is bounded. Introduce the notations P0 = 1 and

Pn+1 :=

n∏
k=0

pk, (n ∈ N).

By a Vilenkin interval we mean one of the form [k/Pn, (k + 1)/Pn) for
some k, n ∈ N, 0 ≤ k < Pn. Given n ∈ N and x ∈ [0, 1) let In(x) denote
the Vilenkin interval of length 1/Pn which contains x. Clearly, the Vilenkin
rectangle of area 1/Pn1

× . . .×1/Pnd
containing x ∈ [0, 1)d is given by In(x) :=

:= In1
(x1)× . . .× Ind

(xd). For n := (n1, . . . , nd) ∈ Nd the σ-algebra generated
by the Vilenkin rectangles {In(x), x ∈ [0, 1)d} will be denoted by Fn. The
conditional expectation operators relative to Fn are denoted by En. We briefly
write Lp instead of the Lp([0, 1)

d, λ) space. The Lebesgue measure is denoted
by λ in any dimension. We denote the Lebesgue measure of a set H also by
|H|.

Suppose that for all j = 2, . . . , d, γj : R+ → R+ are strictly increasing and
continuous functions such that lim∞ γj = ∞. Moreover, suppose that there
exist cj,1, cj,2, ξ > 1 such that

(1) cj,1γj(x) ≤ γj(ξx) ≤ cj,2γj(x) (x > 0).

Let cj,1 = ξτj,1 and cj,2 = ξτj,2 (j = 2, . . . , d). For convenience we extend
the notations for j = 1 by γ1 := I, c1,1 = c1,2 = ξ and τ1,1 = τ1,2 = 1. Let
γ = (γ1, . . . , γd) and δ = (δ1, . . . , δd) with δ1 = 1 and fixed δj ≥ 1 (j = 2, . . . , d).
We will investigate the maximal operator of the summability means and the
convergence over a cone-like set (with respect to the first dimension)

(2) L := {n ∈ Nd : δ−1
j γj(n1) ≤ nj ≤ δjγj(n1), j = 2, . . . , d}.

Cone-like sets were introduced and investigated first by Gát [4]. The con-
dition on γj seems to be natural, because he [4] proved in the two-dimensional
case that to each cone-like set with respect to the first dimension there exists a
larger cone-like set with respect to the second dimension and reversely, if and
only if (1) holds.

To consider summability means over a cone-like set we need to define new
martingale Hardy spaces depending on γ. Given n1 ∈ N we define n2, . . . , nd

by γ0
j (Pn1

) := Pnj
, where Pnj

≤ γj(Pn1
) < Pnj+1 (j = 2, . . . , d). Let n1 :=

:= (n1, n2, . . . , nd). Since the functions γj are increasing, the sequence (n1, n1 ∈
∈ N) is increasing, too. We investigate the class of (one-parameter) martingales
f = (fn1

, n1 ∈ N) with respect to (Fn1
, n1 ∈ N).
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For 0 < p ≤ ∞ the martingale Hardy space Hγ
p ([0, 1)

d) = Hγ
p consists of all

martingales for which

‖f‖Hγ
p
:= ‖ sup

n1∈N
|fn1

|‖p <∞.

It is known (see e.g. Weisz [13]) that Hγ
p ∼ Lp for 1 < p ≤ ∞ where ∼ denotes

the equivalence of the norms and spaces.

3. Cesàro and Riesz summability of Vilenkin–Fourier series

Every point x ∈ [0, 1) can be written in the following way:

x =

∞∑
k=0

xk

Pk+1
, 0 ≤ xk < pk, xk ∈ N.

If there are two different forms, choose the one for which limk→∞ xk = 0. The
functions

rn(x) := exp
2πıxn

pn
(n ∈ N)

are called generalized Rademacher functions, where ı =
√
−1. The functions

corresponding to the sequence (2, 2, . . .) are called Rademacher functions.

The product system generated by the generalized Rademacher functions is
the one-dimensional Vilenkin system:

wn(x) :=

∞∏
k=0

rk(x)
nk

where n =
∑∞

k=0 nkPk, 0 ≤ nk < pk. The product system corresponding to
the Rademacher functions is called Walsh system (see Vilenkin [11] or Schipp,
Wade, Simon and Pál [9]).

The Kronecker product (wn;n ∈ Nd) of d Vilenkin systems is said to be the
d-dimensional Vilenkin system. Thus

wn(x) := wn1(x1) · · ·wnd
(xd)

where n = (n1, . . . , nd) ∈ Nd, x = (x1, . . . , xd) ∈ [0, 1)d. If we consider in each

coordinate a different sequence (p
(j)
n , n ∈ N) and a different Vilenkin system
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(w
(j)
n ;n ∈ Nd) (j = 1, . . . , d), then the same results hold. For simplicity we

suppose that each Vilenkin system is the same.

If f ∈ L1 then the number f̂(n) :=
∫
[0,1)d

fwn dλ (n ∈ Nd) is said to be

the nth Vilenkin–Fourier coefficients of f . We can extend this definition to
martingales in the usual way (see Weisz [13]).

Let α = (α1, . . . , αd) with 0 < αk ≤ 1 (k = 1, . . . , d) and let

Aβ
j :=

(
j + β

j

)
=

(β + 1)(β + 2) . . . (β + j)

j!
(j ∈ N;β �= −1,−2, . . .).

It is known that Aβ
j ∼ O(jβ) (j ∈ N) (see Zygmund [16]). The (C,α) or Cesàro

means and the Riesz means of a martingale f are defined by

σα
nf :=

1∏d
i=1 A

αi
ni−1

d∑
j=1

nj−1∑
mj=0

( d∏
i=1

Aαi
ni−mi−1

)
f̂(m)wm

and

σα,β
n f :=

1∏d
i=1 ni

αiβi

d∑
j=1

nj−1∑
mj=0

( d∏
i=1

(nβi

i −mβi

i )αi

)
f̂(m)wm,

where β = (β1, . . . , βd) and 0 < αk ≤ 1 ≤ βk (k = 1, . . . , d). The functions

Kα
n :=

1

Aα
n−1

n−1∑
k=0

Aα
n−k−1wk, and Kα,β

n :=
1

nαβ

n−1∑
k=0

(nβ − kβ)αwk

are the one-dimensional Cesàro and Riesz kernels. If α = 1 or α = β = 1 then
we obtain the Fejér means

σ1
nf :=

d∑
j=1

nj−1∑
mj=0

( d∏
i=1

(1− mi

ni
)
)
f̂(m)wm =

1∏d
i=1 ni

d∑
j=1

nj−1∑
mj=0

smf.

Since the results of this paper are independent of β, both the (C,α) and Riesz
kernels will be denoted by Kα

n and the corresponding summability means by
σα
n . It is simple to show that

σα
nf(x) =

∫
[0,1)d

f(t)(Kα1
n1

(x1−̇t1) · · ·Kαd
nd

(xd−̇td)) dt (n ∈ Nd)

if f ∈ L1. Note that the group operations +̇ and −̇ were defined in Vilenkin
[11] or in Schipp, Wade, Simon, Pál [9].
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For a given γ, δ satisfying the above conditions the restricted maximal op-
erator is defined by

σα
γ f := sup

n∈L
|σα

nf |,

where the cone-like set L is defined in (2). If γj = I for all j = 2, . . . , d then
we get a cone.

4. Estimations of the (C,α) and Riesz kernels

Recall (see Fine [1] and Vilenkin [11]) that the Vilenkin-Dirichlet kernels

Dk :=
∑k−1

j=0 wj satisfy

(3) DPk
(x) =

{
Pk, if x ∈ [0, P−1

k )

0, if x ∈ [P−1
k , 1)

(k ∈ N).

If we write n in the form n = r1Pn1
+ r2Pn2

+ . . . + rvPnv
with n1 > n2 >

> . . . > nv ≥ 0 and 0 < ri < pi (i = 1, . . . , v), then let n(0) := n and
n(i) := n(i−1) − riPni . We have estimated the (C,α) and Riesz kernels in [14].

Theorem 1 ([14]) For 0 < α ≤ 1 ≤ β we have

(4) |Kα
n (x)| ≤ Cn−α

v∑
k=1

nk∑
j=0

nk∑
i=j

pj−1∑
h=0

Pα−1
i PjDPi(x+̇hP−1

j+1), (n ∈ N).

The uniform boundedness of the integrals of the kernel functions follows
easily from this (see [14]): for 0 < α ≤ 1 ≤ β we have

(5)

1∫
0

|Kα
n | dλ ≤ C, (n ∈ N).

Lemma 1. If 1 ≤ s ≤ K, 0 < α ≤ 1 ≤ β and 1/(α+ 1) < p ≤ 1 then

1∫
P−1

K−s

sup
n≥PK−s

(

P−1
K∫

0

|Kα
n (x+̇t)| dt)p dx ≤ CpP

−1
K ,

where Cp is depending on s, p and α.
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Proof. If j ≥ K − s and x �∈ [0, P−1
K−s) then x+̇hP−1

j+1 �∈ [0, P−1
K−s). Thus

P−1
K∫

0

DPi(x+̇hP−1
j+1+̇t) dt = 0

for x �∈ [0, P−1
K−s), i ≥ j ≥ K − s and h = 0, . . . , pj − 1. Applying (4) we

conclude

P−1
K∫

0

|Kα
n (x+̇t)| dt ≤

≤ Cn−α
v∑

k=1
nk<K−s

nk∑
j=0

nk∑
i=j

pj−1∑
h=0

Pα−1
i Pj

P−1
K∫

0

DPi(x+̇hP−1
j+1+̇t) dt+

+ Cn−α
v∑

k=1
nk≥K−s

K−s−1∑
j=0

K−1∑
i=j

pj−1∑
h=0

Pα−1
i Pj

P−1
K∫

0

DPi
(x+̇hP−1

j+1+̇t) dt+

+ Cn−α
v∑

k=1
nk≥K−s

K−s−1∑
j=0

nk∑
i=K

pj−1∑
h=0

Pα−1
i Pj

P−1
K∫

0

DPi
(x+̇hP−1

j+1+̇t) dt =

= (An) + (Bn) + (Cn).

It is easy to see, that equality (3) implies

P−1
K∫

0

DPi(x+̇hP−1
j+1+̇t) dt = PiP

−1
K 1[hP−1

j+1,hP
−1
j+1+̇P−1

i )(x)

for j ≤ i ≤ K − 1. Thus

(An) ≤ CP−α
K−s

K−s−1∑
l=1

l∑
j=0

K−1∑
i=j

pj−1∑
h=0

Pα−1
i PjPiP

−1
K 1[hP−1

j+1,hP
−1
j+1+̇P−1

i )(x).
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Consequently, if p > 1/(α+ 1) and αp �= 1 then

1∫
P−1

K−s

sup
n≥PK−s

(An)
p dλ ≤ CpP

−αp−p
K

K−s−1∑
l=1

l∑
j=0

K−1∑
i=j

Pαp−1
i P p

j ≤

≤ CpP
−αp−p
K

K−s−1∑
l=1

l∑
j=0

Pαp+p−1
j ≤

≤ CpP
−αp−p
K

K−s−1∑
l=1

Pαp+p−1
l ≤

≤ CpP
−1
K .

Recall that the sequence (pj) is bounded. If αp = 1, in other words, if α = p = 1
then

1∫
P−1

K−s

sup
n≥PK−s

(An)
p dλ ≤ CpP

−αp−p
K

K−s−1∑
l=1

l∑
j=0

(K − j)P p
j ≤

≤ C1P
−1
K

K−s−1∑
j=1

(K − j)2PjP
−1
K ≤

≤ C1P
−1
K

K−s−1∑
j=1

(K − j)22j−K ≤

≤ C1P
−1
K .

Since P−α
n1

Pα
K−s−1(n1 −K + s + 1) ≤ 2−α(n1−K+s+1)(n1 −K + s + 1), which

is bounded, we obtain

(Bn) ≤

≤ CP−α
n1

(n1 −K + s+ 1)

K−s−1∑
j=0

K−1∑
i=j

pj−1∑
h=0

Pα−1
i Pj

P−1
K∫

0

DPi
(x+̇hP−1

j+1+̇t) dt ≤

≤ CP−α
K−s−1

K−s−1∑
j=0

K−1∑
i=j

pj−1∑
h=0

Pα−1
i PjPiP

−1
K 1[hP−1

j+1,hP
−1
j+1+̇P−1

i )(x).

Hence

1∫
P−1

K−s

sup
n≥PK−s

(Bn)
p dλ ≤ CpP

−αp−p
K

K−s−1∑
j=0

K−1∑
i=j

Pαp−1
i P p

j ≤ CpP
−1
K
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as before. The case α = p = 1 can be handled similarly.

If i ≥ K then (3) implies

P−1
K∫

0

DPi
(x+̇hP−1

j+1+̇t) dt = 1[hP−1
j+1,hP

−1
j+1+̇P−1

K )(x).

Similarly as above we can see that

(Cn) ≤

≤ Cn−α/3
v∑

k=1
nk≥K−s

K−s−1∑
j=0

nk∑
i=K

pj−1∑
h=0

P
α/3−1
i Pj

P−1
K∫

0

DPi(x+̇hP−1
j+1+̇t) dt ≤

≤ CP−α/3
n1

(n1 −K + s+ 1)

K−s−1∑
j=0

∞∑
i=K

pj−1∑
h=0

P
α/3−1
i Pj1[hP−1

j+1,hP
−1
j+1+̇P−1

K )(x) ≤

≤ CP
−α/3
K−s−1

K−s−1∑
j=0

∞∑
i=K

pj−1∑
h=0

P
α/3−1
i Pj1[hP−1

j+1,hP
−1
j+1+̇P−1

K )(x).

Consequently,

1∫
P−1

K−s

sup
n≥PK−s

(Cn)
p dλ ≤ CpP

−αp/3
K

K−s−1∑
j=0

∞∑
i=K

P
(α/3−1)p
i P p

j P
−1
K ≤ CpP

−1
K ,

which shows the lemma. �

5. The boundedness of the maximal operators on Hardy spaces

A bounded measurable function a is a p-atom if there exists a Vilenkin
rectangle I ∈ Fn1

such that

(i) supp a ⊂ I,

(ii) ‖a‖∞ ≤ |I|−1/p,

(iii)
∫
I

a dλ = 0.
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Theorem 2. Suppose that

max{1/(αj + 1), j = 1, . . . , d} =: p0 < p <∞

and 0 < αj ≤ 1 ≤ βj (j = 1, . . . , d). Then

(6) ‖σα
γ f‖p ≤ Cp‖f‖Hp

(f ∈ Hp).

In particular, if f ∈ L1 then

(7) sup
ρ>0

ρ λ(σα
γ f > ρ) ≤ C‖f‖1.

Proof. We have to show that the operator σα
γ is bounded from L∞ to L∞

and

(8)

∫
[0,1)d

|σα
γ a|p dλ ≤ Cp

for every p-atom a (see Weisz [13]).

The boundedness follows from (5). Let a be an arbitrary p-atom with
support I = I1 × . . . × Id and |I1| = P−1

K , |Ij | = γ0
j (PK)−1 (j = 2, . . . , d;

K ∈ N). Recall that γ0
1 = I and γ0

j (PK) := PKj
, if PKj

≤ γj(PK) < PKj+1

(j = 2, . . . , d;K,Kj ∈ N). We can assume that Ij = [0, P−1
Kj

) (j = 1, . . . , d). It

is easy to see that â(n) = 0 if nj < γ0
j (PK) for all j = 1, . . . , d. In this case

σα
na = 0.

Suppose that n1 < PK−r for some r ∈ N. Let δj = ξμj and ajτj,1 ≤ μj <
< (aj + 1)τj,1 for some aj ∈ N. By the definition of the cone-like set and by
(1) we have

nj ≤ ξμjγj(n1) ≤ ξ(aj+1)τj,1γj(PK−r) ≤ γj(ξ
aj+1PK−r).

Choose a, bj ∈ N such that ξ ≤ 2a and m = supj∈N pj ≤ ξτj,1bj . Then

nj ≤ ξ−τj,1bjγj(ξ
aj+1+bjPK−r) ≤

1

m
γj(2

a(aj+1+bj)PK−r) ≤

≤ 1

m
γj(2

rPK−r) ≤
1

m
γj(PK) ≤ γ0

j (PK)

for all j = 2, . . . , d, where let r := maxj=2,...,d{a(aj + 1 + bj)}. In this case
σα
na = 0.

Thus we can suppose that n1 ≥ PK−r. By the right hand side of (1),

nj ≥ ξ−(aj+1)τj,1γj(PK−r) ≥ ξ−(aj+1)τj,1ξ−τj,2brγj(PK−rξ
br) ≥

≥ ξ−(aj+1)τj,1−τj,2brγj(PK−rm
r) ≥ 2−a((aj+1)τj,1+τj,2br)γj(PK) ≥

≥ 2−sPKj ≥ PKj−s,
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where b, s ∈ N are chosen such that m ≤ ξb and

max
j=2,...,d

{a((aj + 1)τj,1 + τj,2br)} ≤ s.

We can suppose that s ≥ r. Therefore

σα
γ a ≤ sup

nj≥PKj−s,j=1,...,d
|σα

na|.

By the L∞ boundedness of σα
γ we conclude

∫
∏d

j=1[0,P
−1
Kj−s)

|σα
γ a|p dλ ≤ Cp‖a‖p∞

d∏
j=1

P−1
Kj−s ≤ Cp

d∏
j=1

PKj

d∏
j=1

P−1
Kj−s ≤ Cp.

To compute the integral over [0, 1)d \
∏d

j=1[0, P
−1
Kj−s) it is enough to integrate

over

Hk := [0, 1)\ [0, P−1
K1−s)× . . .× [0, 1)\ [0, P−1

Kk−s)× [0, P−1
Kk+1−s)× . . .× [0, P−1

Kd−s)

for k = 1, . . . , d. Using (5) and the definition of the atom we can see that

|σα
na(x)| ≤

∫
∏d

j=1[0,P
−1
Kj

)

|a(t)|(|Kα1
n1

(x1+̇t1)| × · · · × |Kαd
nd

(xd+̇td)|) dt ≤

≤ C
( d∏

j=1

P
1/p
Kj

) k∏
j=1

∫
[0,P−1

Kj
)

|Kαj
nj

(xj+̇tj)| dtj .

Lemma 1 implies that∫
Hk

|σα
γ a(x)|p dx ≤ Cp

d∏
j=1

PKj

k∏
j=1

P−1
Kj

d∏
j=k+1

P−1
Kj−s = Cp

which verifies (8) as well as (6) for each p0 < p ≤ 1. The weak type (1, 1)
inequality in (7) follows by interpolation. �

This theorem was proved by the author in [12, 14] for cones, i.e. if each
γj = I, and in [15] for trigonometric Fourier series.

Observe that the set of the Vilenkin polynomials is dense in L1. The
weak type (1, 1) inequality in Theorem 2 and the usual density argument of
Marcinkievicz and Zygmund [6] imply



316 F. Weisz

Corollary 1. If 0 < αj ≤ 1 ≤ βj (j = 1, . . . , d) and f ∈ L1 then

lim
n→∞,n∈L

σα
nf = f a.e.

The a.e. convergence of σα
nf was proved by Gát and Nagy [5] for two-

dimensional Fejér means.
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[7] Schipp, F., Über gewissen Maximaloperatoren, Annales Univ. Sci. Bu-
dapest., Sect. Math., 18 (1975), 189–195.

[8] Schipp, F. and P. Simon, On some (H,L1)-type maximal inequalities
with respect to the Walsh-Paley system, In: Functions, Series, Operators,
Proc. Conf. in Budapest, 1980, Volume 35 of Coll. Math. Soc. J. Bolyai,
pages 1039–1045, North Holland, Amsterdam, 1981.

[9] Schipp, F., W.R. Wade, P. Simon and J. Pál, Walsh Series: An
Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, New
York, 1990.

[10] Simon, P., Investigations with respect to the Vilenkin system, Annales
Univ. Sci. Budapest., Sect. Math., 27 (1985), 87–101.

[11] Vilenkin, N.J., On a class of complete orthonormal systems, Izv. Akad.
Nauk. SSSR, Ser. Math., 11 (1947), 363–400.

[12] Weisz, F., Maximal estimates for the (C,α) means of d-dimensional
Walsh-Fourier series, Proc. Amer. Math. Soc., 128 (1999), 2337–2345.



Restricted summability of multi-dimensional Vilenkin–Fourier series 317

[13] Weisz, F., Summability of Multi-dimensional Fourier Series and Hardy
Spaces, Mathematics and Its Applications. Kluwer Academic Publishers,
Dordrecht, Boston, London, 2002.

[14] Weisz, F., Summability results of Walsh- and Vilenkin–Fourier series,
In: Functions, Series, Operators, Alexits Memorial Conference, Budapest
(Hungary), 1999, (eds.: L. Leindler, F. Schipp, and J. Szabados), pages
443–464, 2002.

[15] Weisz, F., Restricted summability of Fourier series and Hardy spaces,
Acta Sci. Math. (Szeged), 75 (2009), 219–231.

[16] Zygmund, A., Trigonometric Series, Cambridge Press, London, 3rd edi-
tion, 2002.

F. Weisz
Department of Numerical Analysis
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Kátai, I.: Some remarks on the Carmichael and on the
Euler’s ϕ function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Matkowski, J.: Functional equations related to
homographic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189



320 Index
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