OFFSET
1,1
COMMENTS
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1000
EXAMPLE
. ----+----+-------+---------------------------------
. 1 | 2 | 2 | 64
. 2 | 3 | 6 | 729
. 3 | 5 | 13 | 15625
. 4 | 7 | 22 | 117649
. 5 | 11 | 45 | 1771561
. 6 | 13 | 58 | 4826809
. 7 | 17 | 87 | 24137569
. 8 | 19 | 102 | 47045881
. 9 | 23 | 135 | 148035889
. 10 | 29 | 181 | 594823321
. 11 | 31 | 199 | 887503681
. 12 | 37 | 252 | 2565726409
. 13 | 41 | 287 | 4750104241
. 14 | 43 | 306 | 6321363049
. 15 | 47 | 342 | 10779215329
. 16 | 53 | 401 | 22164361129
. 17 | 59 | 461 | 42180533641
. 18 | 61 | 479 | 51520374361
. 19 | 67 | 536 | 90458382169
. 20 | 71 | 583 | 128100283921
. 21 | 73 | 602 | 151334226289
. 22 | 79 | 665 | 243087455521
. 23 | 83 | 712 | 326940373369
. 24 | 89 | 776 | 496981290961
. 25 | 97 | 860 | 832972004929 .
PROG
(Haskell)
import Data.List (elemIndex); import Data.Maybe (fromJust)
a258603 = (+ 1) . fromJust . (`elemIndex` a258571_list) . a000040
(Python)
from math import gcd
from sympy import prime, integer_nthroot, factorint
def A258603(n):
c, m = 0, prime(n)**6
for y1 in range(1, integer_nthroot(m, 11)[0]+1):
if all(d<=1 for d in factorint(y1).values()):
for y2 in range(1, integer_nthroot(z2:=m//y1**11, 10)[0]+1):
if gcd(y2, y1)==1 and all(d<=1 for d in factorint(y2).values()):
for y3 in range(1, integer_nthroot(z3:=z2//y2**10, 9)[0]+1):
if all(gcd(y3, x)==1 for x in (y1, y2)) and all(d<=1 for d in factorint(y3).values()):
for y4 in range(1, integer_nthroot(z4:=z3//y3**9, 8)[0]+1):
if all(gcd(y4, x)==1 for x in (y1, y2, y3)) and all(d<=1 for d in factorint(y4).values()):
for y5 in range(1, integer_nthroot(z5:=z4//y4**8, 7)[0]+1):
if all(gcd(y5, x)==1 for x in (y1, y2, y3, y4)) and all(d<=1 for d in factorint(y5).values()):
c += integer_nthroot(z5//y5**7, 6)[0]
return c # Chai Wah Wu, Sep 10 2024
(PARI) \\ Gen(limit, k) defined in A036967.
a(n)=#Gen(prime(n)^6, 6) \\ Andrew Howroyd, Sep 10 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jun 06 2015
EXTENSIONS
a(11) onwards corrected by Chai Wah Wu and Andrew Howroyd, Sep 10 2024
STATUS
approved