[go: up one dir, main page]

login
A258602
a(n) is the index m such that A069492(m) = prime(n)^5.
8
2, 5, 12, 20, 37, 45, 68, 82, 106, 142, 154, 196, 219, 234, 260, 305, 342, 360, 407, 434, 451, 496, 528, 573, 635, 668, 681, 720, 737, 770, 885, 919, 966, 984, 1065, 1087, 1139, 1193, 1228, 1283, 1331, 1348, 1440, 1455, 1484, 1509, 1624, 1731, 1767, 1789
OFFSET
1,1
COMMENTS
A069492(a(n)) = A050997(n) = prime(n)^5;
A069492(m) mod prime(n) > 0 for m < a(n);
also smallest number m such that A258570(m) = prime(n):
A258570(a(n)) = A000040(n) and A258570(m) != A000040(n) for m < a(n).
LINKS
EXAMPLE
. n | p | a(n) | A069492(a(n)) = A050997(n) = p^5
. ----+----+-------+---------------------------------
. 1 | 2 | 2 | 32
. 2 | 3 | 5 | 243
. 3 | 5 | 12 | 3125
. 4 | 7 | 20 | 16807
. 5 | 11 | 37 | 161051
. 6 | 13 | 45 | 371293
. 7 | 17 | 68 | 1419857
. 8 | 19 | 82 | 2476099
. 9 | 23 | 106 | 6436343
. 10 | 29 | 142 | 20511149
. 11 | 31 | 154 | 28629151
. 12 | 37 | 196 | 69343957
. 13 | 41 | 219 | 115856201
. 14 | 43 | 234 | 147008443
. 15 | 47 | 260 | 229345007
. 16 | 53 | 305 | 418195493
. 17 | 59 | 342 | 714924299
. 18 | 61 | 360 | 844596301
. 19 | 67 | 407 | 1350125107
. 20 | 71 | 434 | 1804229351
. 21 | 73 | 451 | 2073071593
. 22 | 79 | 496 | 3077056399
. 23 | 83 | 528 | 3939040643
. 24 | 89 | 573 | 5584059449
. 25 | 97 | 635 | 8587340257 .
PROG
(Haskell)
import Data.List (elemIndex); import Data.Maybe (fromJust)
a258602 = (+ 1) . fromJust . (`elemIndex` a258570_list) . a000040
(Python)
from math import gcd
from sympy import prime, integer_nthroot, factorint
def A258602(n):
c, m = 0, prime(n)**5
for t in range(1, integer_nthroot(m, 9)[0]+1):
if all(d<=1 for d in factorint(t).values()):
for u in range(1, integer_nthroot(s:=m//t**9, 8)[0]+1):
if gcd(t, u)==1 and all(d<=1 for d in factorint(u).values()):
for w in range(1, integer_nthroot(a:=s//u**8, 7)[0]+1):
if gcd(u, w)==1 and gcd(t, w)==1 and all(d<=1 for d in factorint(w).values()):
for y in range(1, integer_nthroot(z:=a//w**7, 6)[0]+1):
if gcd(w, y)==1 and gcd(u, y)==1 and gcd(t, y)==1 and all(d<=1 for d in factorint(y).values()):
c += integer_nthroot(z//y**6, 5)[0]
return c # Chai Wah Wu, Sep 10 2024
(PARI) \\ Gen(limit, k) defined in A036967.
a(n)=#Gen(prime(n)^5, 5) \\ Andrew Howroyd, Sep 10 2024
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jun 06 2015
EXTENSIONS
a(11) onwards corrected by Chai Wah Wu and Andrew Howroyd, Sep 10 2024
STATUS
approved