[go: up one dir, main page]

login
A243405
Minimum among the numbers p^(n/p), where p is a prime factor of n.
2
1, 2, 3, 4, 5, 8, 7, 16, 27, 25, 11, 64, 13, 49, 125, 256, 17, 512, 19, 625, 343, 121, 23, 4096, 3125, 169, 19683, 2401, 29, 15625, 31, 65536, 1331, 289, 16807, 262144, 37, 361, 2197, 390625, 41, 117649, 43, 14641, 1953125, 529, 47, 16777216, 823543, 9765625, 4913, 28561, 53
OFFSET
1,2
COMMENTS
The setting a(1)=1 is conventional.
Upper bound (for any n): a(n) <= (3^(1/3))^n = A002581^n.
LINKS
FORMULA
For prime p, a(p)=p.
For n>1: When gpf(n)>3 then a(n)=gpf(n)^(n/gpf(n)); otherwise if n is even then a(n)=2^(n/2); otherwise a(n)=3^(n/3).
If n is in A033845, a(n) = 2^(n/2); otherwise a(n) = gpf(n)^(n/gpf(n)). - Franklin T. Adams-Watters, Jun 15 2014
EXAMPLE
a(12)=64 because 2^(12/2)=64 is smaller than 3^(12/3)=81.
PROG
(PARI) A243405(n)= {my(m, k, p, q); if(n==1, return(1));
p=factor(n); m=2^n;
for(k=1, #p[, 1], q=p[k, 1]^(n\p[k, 1]); if(q<m, m=q));
return (m); }
CROSSREFS
Cf. A002581, A092975 (maximum instead of minimum), A033845.
Sequence in context: A069968 A298882 A086931 * A164339 A275465 A185198
KEYWORD
nonn
AUTHOR
Stanislav Sykora, Jun 04 2014
STATUS
approved