[go: up one dir, main page]

login
A243408
Primes p such that 10p-1, 10p-3, 10p-7 and 10p-9 are all prime.
1
2, 11, 83, 149, 347, 1301, 1607, 2531, 6299, 7727, 8273, 17117, 20183, 21737, 24371, 26669, 39227, 40277, 53951, 54917, 63347, 66359, 66467, 73637, 82217, 82373, 101537, 102251, 106397, 106871, 117203, 132971, 134033, 135221, 140237, 144701, 146141, 151433, 152597
OFFSET
1,1
COMMENTS
This is a subsequence of A064975.
LINKS
EXAMPLE
2 is prime, 10*2-1 = 19 is prime, 10*2-3 = 17 is prime, 10*2-7 = 13 is prime, 10*2-9 = 11 is prime. Thus 2 is a member of this sequence.
MATHEMATICA
Select[ Range@ 153000], PrimeQ[#] && PrimeQ[10#-1] && PrimeQ[10#-3] && PrimeQ[10#-7] && PrimeQ[10#-9] &] (* Robert G. Wilson v, Jun 06 2014 *)
Select[Prime[Range[15000]], AllTrue[10#-{1, 3, 7, 9}, PrimeQ]&] (* Harvey P. Dale, Aug 18 2024 *)
PROG
(Python)
import sympy
from sympy import isprime
from sympy import prime
{print(prime(n), end=', ') for n in range(1, 10**5) if isprime(10*prime(n)-1) and isprime(10*prime(n)-3) and isprime(10*prime(n)-7) and isprime(10*prime(n)-9)}
(PARI) for(n=1, 10^5, if(ispseudoprime(10*prime(n)-1) && ispseudoprime(10*prime(n)-3) && ispseudoprime(10*prime(n)-7) && ispseudoprime(10*prime(n)-9), print1(prime(n), ", ")))
CROSSREFS
Sequence in context: A209094 A293574 A322644 * A352655 A104086 A143140
KEYWORD
nonn
AUTHOR
Derek Orr, Jun 04 2014
STATUS
approved