[go: up one dir, main page]

login
A241753
Decimal expansion of sum_(n=1..infinity) (H(n)/(n+1))^2, where H(n) is the n-th harmonic number.
0
2, 9, 7, 6, 3, 8, 8, 8, 9, 2, 7, 0, 5, 6, 3, 0, 0, 2, 6, 6, 6, 9, 0, 1, 0, 1, 6, 5, 4, 8, 8, 2, 1, 1, 7, 3, 2, 6, 3, 0, 5, 6, 5, 1, 1, 7, 7, 7, 6, 4, 9, 8, 9, 9, 6, 1, 2, 8, 1, 8, 4, 5, 9, 2, 4, 7, 1, 3, 3, 1, 6, 9, 4, 5, 1, 4, 1, 6, 4, 3, 2, 8, 0, 3, 1, 5, 0, 1, 4, 9, 8, 8, 3, 9, 6, 7, 4, 7, 7, 2
OFFSET
1,1
LINKS
David H. Bailey and Jonathan M. Borwein, Experimental Mathematics: Examples, Methods and Implications, Notices of the AMS Volume 52, Number 5, page 506.
FORMULA
1/(2*Pi)*integral_(0..Pi) (Pi-t)^2*log(2*sin(t/2))^2 dt.
11/17*A218505.
11*Pi^4/360. - Vaclav Kotesovec, Apr 28 2014
EXAMPLE
2.97638889270563002666901016548821173263...
MATHEMATICA
RealDigits[11*Pi^4/360, 10, 100] // First
CROSSREFS
Cf. A218505.
Sequence in context: A180310 A268086 A021340 * A157350 A121837 A160439
KEYWORD
nonn,cons
AUTHOR
STATUS
approved