[go: up one dir, main page]

login
Decimal expansion of sum_(n=1..infinity) (H(n)/(n+1))^2, where H(n) is the n-th harmonic number.
0

%I #7 Apr 28 2014 06:25:35

%S 2,9,7,6,3,8,8,8,9,2,7,0,5,6,3,0,0,2,6,6,6,9,0,1,0,1,6,5,4,8,8,2,1,1,

%T 7,3,2,6,3,0,5,6,5,1,1,7,7,7,6,4,9,8,9,9,6,1,2,8,1,8,4,5,9,2,4,7,1,3,

%U 3,1,6,9,4,5,1,4,1,6,4,3,2,8,0,3,1,5,0,1,4,9,8,8,3,9,6,7,4,7,7,2

%N Decimal expansion of sum_(n=1..infinity) (H(n)/(n+1))^2, where H(n) is the n-th harmonic number.

%H David H. Bailey and Jonathan M. Borwein, <a href="http://www.ams.org/notices/200505/fea-borwein.pdf">Experimental Mathematics: Examples, Methods and Implications</a>, Notices of the AMS Volume 52, Number 5, page 506.

%F 1/(2*Pi)*integral_(0..Pi) (Pi-t)^2*log(2*sin(t/2))^2 dt.

%F 11/17*A218505.

%F 11*Pi^4/360. - _Vaclav Kotesovec_, Apr 28 2014

%e 2.97638889270563002666901016548821173263...

%t RealDigits[11*Pi^4/360, 10, 100] // First

%Y Cf. A218505.

%K nonn,cons

%O 1,1

%A _Jean-François Alcover_, Apr 28 2014