OFFSET
0,2
COMMENTS
This sequence seems to appear also as denominators of A277232, A277234, and A278143. - Wolfdieter Lang, Nov 16 2016
REFERENCES
E. S. Andersen and M. E. Larsen. A finite sum of products of binomial coefficients, Problem 92-18, by C. C. Grosjean, Solution. SIAM Rev. 35 (1993), 645-646.
LINKS
P. Flajolet, B. Salvy, and Helmut Prodinger, A Finite Sum of Products of Binomial Coefficients, Problem 92-18 by C. C. Grosjean, Solution. SIAM Rev. 35 (1993), 645-646.
C. C. Grosjean, Problem no. 92-18, SIAM Rev. 34 (1992), p. 649.
M. E. Larsen, Summa Summarum, page 114.
FORMULA
GAMMA(3/4)^2 * 4F3(1/4, 1/4, -n, -n; 1, 3/4-n, 3/4-n; 1)/(GAMMA(3/4-n)^2*GAMMA(n+1)^2).
binomial(2n, n)^2*binomial(n-1/2, 2n)*(-1/4)^n.
Conjecture (from sequencedb.net): a(n) = 8^A005187(n). - R. J. Mathar, Jun 30 2021
MATHEMATICA
a[n_] := Binomial[2*n, n]^2*Binomial[n-1/2, 2*n]*(-1/4)^n; Table[a[n]//Denominator, {n, 0, 20}]
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Jean-François Alcover, Apr 28 2014
STATUS
approved