OFFSET
1,4
COMMENTS
a(n+1) = number of partitions p of n such that (# 1s in p) <= (#1s in conjugate(p)).
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..2500
FORMULA
a(n) + a(n+1) = A000041(n). - Omar E. Pol, Mar 07 2015
G.f.: (-1 + Product_{k>0} (1 - x^k)^(-1)) * x / (1 + x). - Michael Somos, Mar 16 2015
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)). - Vaclav Kotesovec, Jun 02 2018
EXAMPLE
a(6) counts these 4 partitions: 6, 51, 42, 411, of which the respective conjugates are 111111, 21111, 2211, 3111.
G.f. = x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 7*x^7 + 8*x^8 + 14*x^9 + 16*x^10 + ...
MATHEMATICA
z = 53; f[n_] := f[n] = IntegerPartitions[n]; c[p_] := Table[Count[#, _?(# >= i &)], {i, First[#]}] &[p]; (* conjugate of partition p *)
Table[Count[f[n], p_ /; Count[p, 1] < Count[c[p], 1]], {n, 1, z}] (* A240690 *)
Table[Count[f[n], p_ /; Count[p, 1] <= Count[c[p], 1]], {n, 1, z}] (* A240690(n+1) *)
Table[Count[f[n], p_ /; Count[p, 1] == Count[c[p], 1]], {n, 1, z}] (* A240691 *)
a[ n_] := SeriesCoefficient[ (-1 + 1 / QPochhammer[ x]) x / (1 + x), {x, 0, n}]; (* Michael Somos, Mar 16 2015 *)
PROG
(PARI) q='q+O('q^60); concat([0], Vec((-1 + 1/eta(q))*q/(1+q))) \\ G. C. Greubel, Aug 07 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 11 2014
STATUS
approved