OFFSET
1,1
COMMENTS
Sequence is infinite, as proved by Schlage-Puchta, who comments: "Buttkewitz found a non-computational proof, and the Goldston-Pintz-Yildirim-sieve yields more precise information". - Charles R Greathouse IV, Jan 09 2013
The asymptotic density of this sequence is 0 (Erdős, 1936). - Amiram Eldar, Sep 17 2024
REFERENCES
Calvin C. Clawson, Mathematical mysteries, Plenum Press, 1996, p. 250.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..2500 from T. D. Noe)
Paul Erdős, On a problem of Chowla and some related problems, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 32, No. 4 (1936), pp. 530-540; alternative link.
Jan-Christoph Schlage-Puchta, The equation ω(n)=ω(n+1), Mathematika, Vol. 50, No. 1-2 (2003), pp. 99-101; arXiv preprint, arXiv:1105.1621 [math.NT], 2011.
FORMULA
MATHEMATICA
f[n_] := Length@FactorInteger[n]; t = f /@ Range[175]; Flatten@Position[Rest[t] - Most[t], 0] (* Ray Chandler, Mar 27 2007 *)
Select[Range[200], PrimeNu[#]==PrimeNu[#+1]&] (* Harvey P. Dale, May 09 2012 *)
Flatten[Position[Partition[PrimeNu[Range[200]], 2, 1], _?(#[[1]]==#[[2]]&), {1}, Heads->False]] (* Harvey P. Dale, May 22 2015 *)
SequencePosition[PrimeNu[Range[200]], {x_, x_}][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 02 2019 *)
PROG
(PARI) is(n)=omega(n)==omega(n+1) \\ Charles R Greathouse IV, Jan 09 2013
(Haskell)
import Data.List (elemIndices)
a006049 n = a006049_list !! (n-1)
a006049_list = map (+ 1) $ elemIndices 0 $
zipWith (-) (tail a001221_list) a001221_list
-- Reinhard Zumkeller, Jan 22 2013
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Extended by Ray Chandler, Mar 27 2007
STATUS
approved