[go: up one dir, main page]

login
A006049
Numbers k such that k and k+1 have the same number of distinct prime divisors.
37
2, 3, 4, 7, 8, 14, 16, 20, 21, 31, 33, 34, 35, 38, 39, 44, 45, 50, 51, 54, 55, 56, 57, 62, 68, 74, 75, 76, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 111, 115, 116, 117, 118, 122, 123, 127, 133, 134, 135, 141, 142, 143, 144, 145, 146, 147, 152, 158, 159, 160, 161, 171, 175
OFFSET
1,1
COMMENTS
Sequence is infinite, as proved by Schlage-Puchta, who comments: "Buttkewitz found a non-computational proof, and the Goldston-Pintz-Yildirim-sieve yields more precise information". - Charles R Greathouse IV, Jan 09 2013
The asymptotic density of this sequence is 0 (Erdős, 1936). - Amiram Eldar, Sep 17 2024
REFERENCES
Calvin C. Clawson, Mathematical mysteries, Plenum Press, 1996, p. 250.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..2500 from T. D. Noe)
Paul Erdős, On a problem of Chowla and some related problems, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 32, No. 4 (1936), pp. 530-540; alternative link.
Jan-Christoph Schlage-Puchta, The equation ω(n)=ω(n+1), Mathematika, Vol. 50, No. 1-2 (2003), pp. 99-101; arXiv preprint, arXiv:1105.1621 [math.NT], 2011.
FORMULA
A001221(a(n)) = A001221(a(n)+1). - Reinhard Zumkeller, Jan 22 2013
MATHEMATICA
f[n_] := Length@FactorInteger[n]; t = f /@ Range[175]; Flatten@Position[Rest[t] - Most[t], 0] (* Ray Chandler, Mar 27 2007 *)
Select[Range[200], PrimeNu[#]==PrimeNu[#+1]&] (* Harvey P. Dale, May 09 2012 *)
Flatten[Position[Partition[PrimeNu[Range[200]], 2, 1], _?(#[[1]]==#[[2]]&), {1}, Heads->False]] (* Harvey P. Dale, May 22 2015 *)
SequencePosition[PrimeNu[Range[200]], {x_, x_}][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 02 2019 *)
PROG
(PARI) is(n)=omega(n)==omega(n+1) \\ Charles R Greathouse IV, Jan 09 2013
(Haskell)
import Data.List (elemIndices)
a006049 n = a006049_list !! (n-1)
a006049_list = map (+ 1) $ elemIndices 0 $
zipWith (-) (tail a001221_list) a001221_list
-- Reinhard Zumkeller, Jan 22 2013
CROSSREFS
Subsequence of A062974.
Sequence in context: A057887 A202116 A215914 * A084541 A240690 A339593
KEYWORD
nonn,easy,nice
EXTENSIONS
Extended by Ray Chandler, Mar 27 2007
STATUS
approved