[go: up one dir, main page]

login
A238485
Number of partitions p of n not containing ceiling((min(p) + max(p))/2) as a part.
1
0, 0, 0, 1, 2, 4, 7, 11, 15, 25, 32, 45, 63, 84, 108, 150, 188, 247, 321, 407, 514, 666, 824, 1039, 1304, 1620, 2003, 2497, 3054, 3761, 4617, 5631, 6848, 8356, 10090, 12217, 14751, 17744, 21300, 25579, 30553, 36506, 43523, 51768, 61458, 72943, 86273, 101992
OFFSET
1,5
FORMULA
a(n) + A238484(n) = A000041(n).
EXAMPLE
a(6) counts these partitions: 51, 42, 411, 3111.
MATHEMATICA
Table[Count[IntegerPartitions[n], p_ /; !MemberQ[p, Ceiling[(Min[p] + Max[p])/2]]], {n, 30}]
CROSSREFS
Cf. A238482.
Sequence in context: A261878 A261993 A299251 * A316264 A067744 A307601
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 27 2014
STATUS
approved