OFFSET
1,3
COMMENTS
Number of z-classes in symmetric group on n points. [Bhunia et al., Cor. 1.2]. - Eric M. Schmidt, Nov 02 2017
LINKS
Eric M. Schmidt, Table of n, a(n) for n = 1..1000
Sushil Bhunia, Dilpreet Kaur, Anupam Singh, z-Classes and Rational Conjugacy Classes in Alternating Groups, arXiv:1705.06651 [math.GR], 2017.
FORMULA
EXAMPLE
a(9) counts all the 30 partitions of 9 except 621 and 54.
MATHEMATICA
Table[Count[IntegerPartitions[n], p_ /; ! MemberQ[p, 2*Length[p]]], {n, 40}]
PROG
(Sage) def a(n) : return 1 if n in [1, 2] else Partitions(n).cardinality() - sage.combinat.partition.Partitions_parts_in(n-2, [3..n-2]).cardinality() # Eric M. Schmidt, Nov 02 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 27 2014
STATUS
approved