[go: up one dir, main page]

login
A238484
Number of partitions p of n containing ceiling((min(p) + max(p))/2) as a part.
1
1, 2, 3, 4, 5, 7, 8, 11, 15, 17, 24, 32, 38, 51, 68, 81, 109, 138, 169, 220, 278, 336, 431, 536, 654, 816, 1007, 1221, 1511, 1843, 2225, 2718, 3295, 3954, 4793, 5760, 6886, 8271, 9885, 11759, 14030, 16668, 19738, 23407, 27676, 32615, 38481, 45281, 53153
OFFSET
1,2
FORMULA
a(n) + A238485(n) = A000041(n).
EXAMPLE
a(6) counts these partitions: 6, 33, 321, 222, 2211, 21111, 111111.
MATHEMATICA
Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Ceiling[(Min[p] + Max[p])/2]]], {n, 30}]
CROSSREFS
Cf. A238483.
Sequence in context: A309879 A191166 A366064 * A241340 A326667 A293441
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 27 2014
STATUS
approved