[go: up one dir, main page]

login
A201772
Decimal expansion of the number x satisfying x^2+x+4=e^x.
2
2, 5, 8, 5, 5, 5, 4, 6, 3, 3, 7, 1, 1, 7, 3, 7, 7, 9, 5, 6, 2, 4, 6, 8, 6, 3, 6, 3, 0, 2, 7, 8, 0, 6, 7, 7, 3, 2, 3, 0, 8, 3, 3, 3, 0, 0, 0, 0, 1, 7, 5, 4, 9, 2, 6, 0, 5, 2, 1, 4, 0, 3, 5, 9, 1, 1, 2, 8, 2, 4, 2, 8, 7, 0, 2, 2, 1, 9, 0, 7, 6, 1, 4, 0, 1, 3, 8, 0, 9, 7, 5, 8, 6, 7, 0, 3, 6, 2, 6
OFFSET
1,1
COMMENTS
See A201741 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
x=2.58555463371173779562468636302780677323083330000...
MATHEMATICA
a = 1; b = 1; c = 4;
f[x_] := a*x^2 + b*x + c; g[x_] := E^x
Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 2.5, 2.6}, WorkingPrecision -> 110]
RealDigits[r] (* A201772 *)
CROSSREFS
Cf. A201741.
Sequence in context: A020859 A062089 A011201 * A196605 A182243 A360898
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 06 2011
STATUS
approved