[go: up one dir, main page]

login
A062089
Decimal expansion of Sierpiński's constant.
11
2, 5, 8, 4, 9, 8, 1, 7, 5, 9, 5, 7, 9, 2, 5, 3, 2, 1, 7, 0, 6, 5, 8, 9, 3, 5, 8, 7, 3, 8, 3, 1, 7, 1, 1, 6, 0, 0, 8, 8, 0, 5, 1, 6, 5, 1, 8, 5, 2, 6, 3, 0, 9, 1, 7, 3, 2, 1, 5, 4, 4, 9, 8, 7, 9, 7, 1, 9, 3, 2, 0, 4, 4, 0, 0, 1, 1, 5, 7, 1, 2, 0, 2, 1, 1, 1, 1, 7, 7, 2, 4, 5, 2, 7, 0, 6, 4, 2, 8, 3, 0, 3, 1, 3, 4
OFFSET
1,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 122-126.
LINKS
Steven R. Finch, Sierpinski's Constant. [Broken link]
Steven R. Finch, Sierpinski's Constant. [From the Wayback machine]
Eric Weisstein's World of Mathematics, Sierpiński Constant.
FORMULA
Equals -Pi*log(Pi)+2*Pi*gamma+4*Pi*log(GAMMA(3/4)).
Equals Pi*A241017. - Eric W. Weisstein, Dec 10 2014
Equals Pi*(A086058-1). - Eric W. Weisstein, Dec 10 2014
Equals lim_{n->oo} (A004018(n)/n - Pi*log(n)). - Amiram Eldar, Apr 15 2021
EXAMPLE
2.5849817595792532170658935873831711600880516518526309173215...
MATHEMATICA
K=-Pi Log[Pi]+2 Pi EulerGamma+4 Pi Log[Gamma[3/4]]; First@RealDigits[N[K, 105]](* Ant King, Mar 02 2013 *)
PROG
(PARI) -Pi*log(Pi)+2*Pi*Euler+4*Pi*log(gamma(3/4))
(PARI) { default(realprecision, 5080); x=-Pi*log(Pi)+2*Pi*Euler+4*Pi*log(gamma(3/4)); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b062089.txt", n, " ", d)) } \\ Harry J. Smith, Aug 01 2009
CROSSREFS
KEYWORD
cons,easy,nonn
AUTHOR
Jason Earls, Jun 27 2001
STATUS
approved