[go: up one dir, main page]

login
A186266
Expansion of 2F1( 1/2, 3/2; 4; 16*x ).
1
1, 3, 18, 140, 1260, 12474, 132132, 1472328, 17065620, 204155380, 2506399896, 31443925968, 401783498480, 5215458874500, 68633685693000, 914099013896400, 12304253831789700, 167193096184907100, 2291164651422801000, 31637804708163654000, 439903041116118980400
OFFSET
0,2
COMMENTS
Combinatorial interpretation welcome.
Could involve planar maps, lattice walks, interpretations of catalan numbers.
LINKS
H. Franzen, T. Weist, The Value of the Kac Polynomial at One, arXiv preprint arXiv:1608.03419 [math.RT], 2016.
FORMULA
a(n) = 3*A000108(n)*A000108(n+1)*(n+1)/(n+3). - David Scambler, Aug 18 2012
D-finite with recurrence n*(n+3)*a(n) -4*(2*n-1)*(2*n+1)*a(n-1)=0. - R. J. Mathar, Jun 17 2016
MATHEMATICA
CoefficientList[
Series[HypergeometricPFQ[{1/2, 3/2}, {4}, 16*x], {x, 0, 20}], x]
Table[3 CatalanNumber[n] CatalanNumber[n+1] * (n+1) / (n+3), {n, 0, 20}] (* Indranil Ghosh, Mar 05 2017 *)
PROG
(PARI)
c(n) = binomial(2*n, n) / (n+1);
a(n) = 3 * c(n) * c(n+1) *(n+1) / (n+3); \\ Indranil Ghosh, Mar 05 2017
(Python)
import math
f=math.factorial
def C(n, r): return f(n) / f(r) / f(n-r)
def Catalan(n): return C(2*n, n) / (n+1)
def A186266(n): return 3 * Catalan(n) * Catalan(n+1) * (n+1) / (n+3) # Indranil Ghosh, Mar 05 2017
CROSSREFS
Formula close to A000257, A000888, A172392.
Sequence in context: A183363 A216492 A127129 * A260506 A193237 A377530
KEYWORD
nonn,easy
AUTHOR
Olivier GĂ©rard, Feb 16 2011
STATUS
approved