[go: up one dir, main page]

login
A186264
Expansion of 3F2( 1, 3/2, 3/2; 3, 4;16 x).
2
1, 3, 15, 98, 756, 6534, 61347, 613470, 6447012, 70526404, 797490876, 9271926888, 110380082000, 1341117996300, 16586474042475, 208360804638150, 2653858669601700, 34220809160653500, 446174168961282300, 5875592302944678600, 78078028942687784400
OFFSET
0,2
COMMENTS
Combinatorial interpretation welcome.
LINKS
FORMULA
G.f. is equivalent to -3*( 1+2*x -2F1(-1/2,-1/2;2;16*x) ) /(4*x^2).
a(n) = 3/((n+3)*(n+2)^2)*(2*n+2)!^2/(n+1)!^4 = 3/(n+3)* Catalan(n+1)^2. - Peter Bala, Mar 28 2018
D-finite with recurrence (n+3)*(n+2)*a(n) -4*(2*n+1)^2*a(n-1)=0. - R. J. Mathar, Feb 08 2021
MAPLE
seq(3/((n+3)*(n+2)^2)*binomial(2*n+2, n+1)^2, n = 0..20); # Peter Bala, Mar 28 2018
MATHEMATICA
CoefficientList[Series[HypergeometricPFQ[{1, 3/2, 3/2}, {3, 4}, 16*x], {x, 0, 20}],
x]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Olivier GĂ©rard, Feb 16 2011
STATUS
approved