[go: up one dir, main page]

login
A178632
a(n) = 45 * ((10^n - 1)/9)^2.
14
45, 5445, 554445, 55544445, 5555444445, 555554444445, 55555544444445, 5555555444444445, 555555554444444445, 55555555544444444445, 5555555555444444444445, 555555555554444444444445
OFFSET
1,1
FORMULA
a(n) = 45*A002477(n) = A002283(n)*A002279(n).
a(n) = (A002279(n-1)*10^n + A002278(n))*10 + 5.
G.f.: 45*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Ilya Gutkovskiy, Feb 24 2017
EXAMPLE
n=1: ..................... 45 = 9 * 5;
n=2: ................... 5445 = 99 * 55;
n=3: ................. 554445 = 999 * 555;
n=4: ............... 55544445 = 9999 * 5555;
n=5: ............. 5555444445 = 99999 * 55555;
n=6: ........... 555554444445 = 999999 * 555555;
n=7: ......... 55555544444445 = 9999999 * 5555555;
n=8: ....... 5555555444444445 = 99999999 * 55555555;
n=9: ..... 555555554444444445 = 999999999 * 555555555.
MATHEMATICA
45 (FromDigits/@Table[PadRight[{}, n, 1], {n, 20}])^2 (* Vincenzo Librandi, Mar 20 2014 *)
LinearRecurrence[{111, -1110, 1000}, {45, 5445, 554445}, 20] (* Harvey P. Dale, Jan 23 2019 *)
PROG
(Magma) [45*((10^n-1)/9)^2: n in [1..50]]; // Vincenzo Librandi, Dec 28 2010
(Maxima) A178632(n):=45*((10^n-1)/9)^2$ makelist(A178632(n), n, 1, 12); /* Martin Ettl, Nov 08 2012 */
(PARI) a(n)=45*(10^n\9)^2 \\ Charles R Greathouse IV, Jul 02 2013
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, May 31 2010
STATUS
approved