[go: up one dir, main page]

login
A059988
a(n) = (10^n - 1)^2.
20
0, 81, 9801, 998001, 99980001, 9999800001, 999998000001, 99999980000001, 9999999800000001, 999999998000000001, 99999999980000000001, 9999999999800000000001, 999999999998000000000001, 99999999999980000000000001, 9999999999999800000000000001, 999999999999998000000000000001
OFFSET
0,2
COMMENTS
From James D. Klein, Feb 05 2012: (Start)
The periods of the reciprocals of a(n) are the consecutive integers from 0 to 10^n-1, omitting the one integer 10^n-2, right-justified in field widths of size n. E.g.:
1/81 = 0.012345679...
1/9801 = 0.000102030405060708091011...9799000102...
1/998001 = 0.000001002003004005...997999000001002... (End)
Sum of first 10^n - 1 odd numbers. - Arkadiusz Wesolowski, Jun 12 2013
REFERENCES
Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 32 at p. 61.
Walther Lietzmann, Lustiges und Merkwuerdiges von Zahlen und Formen, (F. Hirt, Breslau 1921-43), p. 149.
FORMULA
a(n) = 81*A002477(n) = A002283(n)^2 = (9*A002275(n))^2.
a(n) = {999... (n times)}^2 = {999... (n times), 000... (n times)} - {999... (n times)}. For example, 999^2 = 999000 - 999 = 998001. - Kyle D. Balliet, Mar 07 2009
a(n) = (A002283(n-1)*10 + 8) * 10^(n-1) + 1, for n>0. - Reinhard Zumkeller, May 31 2010
From Ilya Gutkovskiy, Apr 19 2016: (Start)
O.g.f.: 81*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)).
E.g.f.: (1 - 2*exp(9*x) + exp(99*x))*exp(x). (End)
Sum_{n>=1} 1/a(n) = (log(10)*(QPolyGamma(0, 1, 1/10) - log(10/9)) + QPolyGamma(1, 1, 1/10))/log(10)^2 = 0.012448721523422795191... . - Stefano Spezia, Jul 31 2024
EXAMPLE
From Reinhard Zumkeller, May 31 2010: (Start)
n=1: ..................... 81 = 9^2;
n=2: ................... 9801 = 99^2;
n=3: ................. 998001 = 999^2;
n=4: ............... 99980001 = 9999^2;
n=5: ............. 9999800001 = 99999^2;
n=6: ........... 999998000001 = 999999^2;
n=7: ......... 99999980000001 = 9999999^2;
n=8: ....... 9999999800000001 = 99999999^2;
n=9: ..... 999999998000000001 = 999999999^2. (End)
MAPLE
A059988:=n->(10^n-1)^2; seq(A059988(n), n=0..20); # Wesley Ivan Hurt, Nov 21 2013
MATHEMATICA
Table[(10^n-1)^2, {n, 0, 20}] (* Wesley Ivan Hurt, Nov 21 2013 *)
PROG
(PARI) { for (n=0, 200, write("b059988.txt", n, " ", (10^n - 1)^2); ) } \\ Harry J. Smith, Jul 01 2009
(Python) def a(n): return (10**n - 1)**2 # Martin Gergov, Sep 10 2022
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Mar 07 2001
STATUS
approved