[go: up one dir, main page]

login
A167864
Decimal expansion of Selberg-Delange constant Product_{prime p > 2} (1 + 1/(p(p-2)))
7
1, 5, 1, 4, 7, 8, 0, 1, 2, 8, 1, 3, 7, 4, 9, 1, 2, 5, 7, 7, 9, 0, 9, 1, 9, 2, 5, 5, 6, 4, 9, 4, 7, 4, 8, 9, 2, 4, 1, 5, 2, 7, 0, 1, 5, 8, 2, 8, 6, 2, 1, 4, 3, 9, 5, 3, 5, 7, 4, 8, 4, 2, 7, 1, 4, 8, 4, 9, 3, 2, 2, 0, 9, 8, 1, 5, 6, 1, 1, 5, 8, 1, 0, 8, 7, 7, 5, 8, 5, 3, 8, 2, 7, 6, 9, 8, 0, 7, 6, 7, 7, 6, 5, 6, 2
OFFSET
1,2
COMMENTS
Coefficient in formulas for the distribution of integers with a fixed number of prime factors.
Reciprocal of the twin prime constant A005597. See A005597 for links and additional references and comments.
Numerators of partial products are A062271. Denominators are A062270.
An analog for primes of Wallis' product pi/2 = Product_{n >=1} (2n)^2/(2n-1)(2n+1), because A167864 = Product_{prime p>2} (p-1)^2/(p-2)p.
Grosswald (see links) proves that Sum_{k<=x} 2^Omega(k) ~ (1/(8*log(2))) * c * x * (log(x))^2 + O(x * log(x)) where c is this constant. - Amiram Eldar, Jun 06 2020
The asymptotic density of numbers m with A046660(m) = Omega(m) - omega(m) = k is asymptotically ~ c/2^(k+2) as k -> oo, where c is this constant (Rényi, 1955). - Amiram Eldar, Aug 08 2020
Named after the Norwegian mathematician Atle Selberg (1917-2007) and the French mathematician Hubert Delange (1914-2003). - Amiram Eldar, Jun 20 2021
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, pp. 84-93.
Atle Selberg, Note on a paper by L. G. Sathe, J. Indian Math. Soc., Vol. 18, No. 1 (1954), pp. 83-87.
Gérald Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge University Press, 1995, p. 206.
LINKS
Michel Balazard, Hubert Delange and Jean-Louis Nicolas, Sur le nombre de facteurs premiers des entiers, C. R. Acad. Sci., Paris, Ser. I, Vol. 306 (1988), pp. 511-514. [From Jonathan Sondow, Nov 17 2009]
Hubert Delange, Sur des formules de Atle Selberg, Acta Arith., Vol. 19 (1971), pp. 105-146.
Steven R. Finch, Mathematical Constants, Errata and Addenda, Sec. 2.1.
Emil Grosswald, The average order of an arithmetic function, Duke Mathematical Journal, Vol. 23, No. 1 (1956), pp. 41-44.
Jean-Louis Nicolas, Sur la distribution des nombres entiers ayant une quantite fixee de facteurs premiers, Acta Arith., Vol. 44 (1984), pp. 191-200.
Alfred Rényi, On the density of certain sequences of integers, Publications de l'Institut Mathématique, Vol. 8 (1955), pp. 157-162.
FORMULA
Equals 1/A005597.
Equals Product_{prime p>2} (p-1)^2/(p-2)p = (2^2/1*3)(4^2/3*5)(6^2/5*7)(10^2/9*11) ....
EXAMPLE
Product_{prime p > 2} (1 + 1/(p(p-2))) = 1.5147801281374912577185338123...
MATHEMATICA
s[n_] := (1/n)* N[Sum[MoebiusMu[d]*2^(n/d), {d, Divisors[n]}], 160]; C2 = (175/256)*Product[(Zeta[ n]*(1 - 2^(-n))*(1 - 3^(-n))*(1 - 5^(-n))*(1 - 7^(-n)))^(-s[ n]), {n, 2, 160}]; RealDigits[1/C2][[1]][[1 ;; 105]] (* Jean-François Alcover, Oct 30 2012, after Pari program in A005597 *)
$MaxExtraPrecision = 300; digits = 105; terms = 600; P[n_] := PrimeZetaP[n] - 1/2^n; LR = Join[{0, 0}, LinearRecurrence[{3, -2}, {2, 6}, terms + 10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n-1]/(n-1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 19 2016 *)
PROG
(PARI) prodeulerrat((1 + 1/(p*(p-2))), , 3) \\ Hugo Pfoertner, Aug 08 2020
CROSSREFS
Cf. A005597.
Cf. A001222 (Omega), A046660, A061142 (2^Omega), A069205 (partial sums of 2^Omega).
Sequence in context: A179290 A342014 A355953 * A232809 A011301 A316248
KEYWORD
cons,nonn
AUTHOR
Jonathan Sondow, Nov 13 2009, Nov 17 2009
STATUS
approved