[go: up one dir, main page]

login
A165441
Table T(k,n) read by antidiagonals: denominator of 1/min(n,k)^2 -1/max(n,k)^2.
4
1, 4, 4, 9, 1, 9, 16, 36, 36, 16, 25, 16, 1, 16, 25, 36, 100, 144, 144, 100, 36, 49, 9, 225, 1, 225, 9, 49, 64, 196, 12, 400, 400, 12, 196, 64, 81, 64, 441, 144, 1, 144, 441, 64, 81, 100, 324, 576, 784, 900, 900, 784, 576, 324, 100, 121, 25, 81, 64, 1225, 1, 1225, 64, 81, 25, 121
OFFSET
1,2
COMMENTS
A synopsis of the denominators of the transitions in the Rydberg-Ritz spectrum of hydrogenic atoms.
LINKS
FORMULA
T(n,k) = A165727(n,k).
EXAMPLE
.1, 4, 9, 16, 25, 36, 49, 64, 81, ... A000290
.4, 1, 36, 16, 100, 9, 196, 64, 324, ... A061038
.9, 36, 1, 144, 225, 12, 441, 576, 81, ... A061040
16, 16, 144, 1, 400, 144, 784, 64, 1296, ... A061042
25, 100, 225, 400, 1, 900, 1225, 1600, 2025, ... A061044
36, 9, 12, 144, 900, 1, 1764, 576, 324, ... A061046
49, 196, 441, 784, 1225, 1764, 1, 3136, 3969, ... A061048
64, 64, 576, 64, 1600, 576, 3136, 1, 5184, ... A061050
81, 324, 81, 1296, 2025, 324, 3969, 5184, 1, ...
MAPLE
T:= (k, n)-> denom(1/min (n, k)^2 -1/max (n, k)^2):
seq(seq(T(k, d-k), k=1..d-1), d=2..12);
MATHEMATICA
T[n_, k_] := Denominator[1/Min[n, k]^2 - 1/Max[n, k]^2];
Table[T[n-k, k], {n, 2, 12}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Feb 04 2020 *)
CROSSREFS
Sequence in context: A176441 A363683 A143183 * A204997 A178840 A246668
KEYWORD
nonn,tabl,frac,look,easy
AUTHOR
Paul Curtz, Sep 19 2009
EXTENSIONS
Edited by R. J. Mathar, Feb 27 2010, Mar 03 2010
STATUS
approved