[go: up one dir, main page]

login
A178840
Decimal expansion of the factorial of Golden Ratio.
3
1, 4, 4, 9, 2, 2, 9, 6, 0, 2, 2, 6, 9, 8, 9, 6, 6, 0, 0, 3, 7, 7, 8, 7, 9, 7, 9, 0, 6, 2, 9, 7, 6, 8, 3, 3, 7, 0, 8, 4, 0, 8, 9, 8, 9, 0, 9, 6, 6, 6, 7, 6, 0, 7, 5, 3, 3, 7, 0, 2, 3, 8, 5, 8, 1, 3, 8, 9, 1, 1, 8, 0, 7, 9, 4, 2, 7, 9, 7, 4, 7, 1, 9, 1, 2, 9, 4, 0, 4, 9, 1, 6, 9, 6, 5, 7, 0, 3, 1, 4, 2, 8, 5, 4, 3
OFFSET
1,2
LINKS
FORMULA
Factorial of Golden Ratio = Gamma(1 + phi) = Gamma((3 + sqrt(5))/2). - Bernard Schott, Jan 21 2019
Equals Gamma((sqrt(5) - 1)/2). - Vaclav Kotesovec, Jan 21 2019
EXAMPLE
1.44922960226989660037787979062976833708408989096667607533702385813891...
MAPLE
evalf(GAMMA(1+evalf((1+sqrt(5))/2, 100)), 106); # Golden ratio
MATHEMATICA
RealDigits[Gamma[(Sqrt[5] - 1)/2], 10, 120][[1]] (* Vaclav Kotesovec, Jan 20 2019 *)
PROG
(PARI) default(realprecision, 100); gamma((sqrt(5)-1)/2) \\ G. C. Greubel, Jan 21 2019
(Magma) SetDefaultRealField(RealField(100)); Gamma((Sqrt(5)-1)/2); // G. C. Greubel, Jan 21 2019
(Sage) numerical_approx(gamma(1/golden_ratio), digits=100) # G. C. Greubel, Jan 21 2019
CROSSREFS
Cf. A001622 (golden ratio).
Sequence in context: A143183 A165441 A204997 * A246668 A021073 A021961
KEYWORD
easy,nonn,cons
AUTHOR
STATUS
approved