[go: up one dir, main page]

login
A165438
Number a(n) of alternative sets of orthogonal contrasts available to partition variation between n levels of a categorical factor in analysis of variance, with each set described by a unique general linear model.
0
1, 3, 4, 8, 15, 34, 69, 152, 332, 751, 1698, 3905, 9020, 21051, 49356, 116505, 276217, 658091, 1573835, 3778152, 9098915, 21980209, 53241777, 129294912, 314714273, 767700735, 1876437054, 4595005570, 11271747564, 27695048780
OFFSET
3,2
COMMENTS
Each set has n-1 orthogonal contrasts.
REFERENCES
Doncaster, C. P. & Davey, A. J. H. (2007) Analysis of Variance and Covariance: How to Choose and Construct Models for the Life Sciences. Cambridge: Cambridge University Press.
LINKS
C. P. Doncaster, Contrast sets
C. P. Doncaster, Orthogonal contrasts
C. P. Doncaster & A. J. H. Davey, Analysis of Variance and Covariance
FORMULA
For n=5,6,7: a(n) = -mod(n,2)*a([n-mod{n,2}]/2) + sum_{k=3..n-1} a[k]
For n>7: a(n) = -mod(n,2)*a([n-mod{n,2}]/2) + 2*a(n-1) + b(n) - b(n-1)
where b(m) = 0^mod(log(m,2),1) + mod(m-1,2)*0.5*a([m-mod{m,2}]/2)*(a[{m-mod(m,2)}/2]-1)
+ sum_{k=3..(m-1-mod[m-1,2])/2} a(m-k)*(a[k]-1)
EXAMPLE
A factor 'A' with n = 5 levels, has a(5) = 4 alternative sets of orthogonal
contrasts, each with n - 1 = 4 contrasts. The corresponding alternative
general linear models describing contrasts 'B', 'C', 'D', 'E' are:
B + C(B) + D(B) + E(D B)
B + C(B) + D(C B) + E(D C B)
B + C(B) + D(C B) + E(C B)
B + C(B) + D(B) + E(B)
CROSSREFS
Sequence in context: A337438 A007486 A027977 * A293781 A202025 A227615
KEYWORD
nonn
AUTHOR
C. Patrick Doncaster (cpd(AT)soton.ac.uk), Sep 18 2009
EXTENSIONS
Corrected and edited by C. P. Doncaster (cpd(AT)soton.ac.uk), Mar 02 2010
STATUS
approved