[go: up one dir, main page]

login
A202025
Position of second appearance of set of first n terms in the sequence of odd primes modulo 4.
0
3, 4, 8, 16, 16, 19, 60, 221, 654, 654, 654, 654, 654, 30291, 30291, 30291, 30291, 250231, 342916, 342916, 472727, 1934365, 1934365, 11877702, 11877702, 11877702
OFFSET
1,1
COMMENTS
Next term, a(27) > 3*10^7.
EXAMPLE
Consider the sequence of odd primes modulo 4: S= 3, 1, 3, 3, 1, 1, 3, 3, 1, 3, 1, 1, 3, 3, 1, 3, 1,... . Then
a(1)=3 because 2nd appearance of 3 is S(3),
a(2)=4 because 2nd appearance of (3,1) begins at S(4),
a(3)=8 because 2nd appearance of (3,1,3) begins at S(8),
a(4)=16 because 2nd appearance of (3,1,3,3) begins at S(16).
MATHEMATICA
nn=3*10^7; s=Table[Mod[Prime[n], 4], {n, 2, nn}]; Reap[k1=2; Do[tn=Take[s, n]; Do[If[tn==Take[s, {k, k+n-1}], Sow[k]; k1=k; Break[]], {k, k1, nn-n-1}], {n, 26}]][[2, 1]]
CROSSREFS
Cf. A039702.
Sequence in context: A027977 A165438 A293781 * A227615 A049894 A198633
KEYWORD
nonn
AUTHOR
Zak Seidov, Dec 09 2011
STATUS
approved