[go: up one dir, main page]

login
A155713
Intersection of A154778 and A155716: N = a^2 + 5b^2 = c^2 + 6d^2 for some positive integers a,b,c,d.
0
49, 70, 105, 145, 150, 166, 196, 214, 225, 241, 249, 280, 294, 321, 406, 409, 420, 441, 454, 505, 580, 600, 601, 609, 630, 664, 681, 694, 721, 726, 745, 769, 784, 841, 856, 870, 886, 889, 900, 934, 945, 964, 996, 1009, 1030, 1041, 1089, 1120, 1126, 1129
OFFSET
1,1
PROG
(PARI) isA155713(n, /* optional 2nd arg allows us to get other sequences */c=[6, 5]) = { for(i=1, #c, for(b=1, sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return); 1}
for( n=1, 999, isA155713(n) & print1(n", "))
KEYWORD
easy,nonn
AUTHOR
M. F. Hasler, Jan 25 2009
STATUS
approved