[go: up one dir, main page]

login
Intersection of A154778 and A155716: N = a^2 + 5b^2 = c^2 + 6d^2 for some positive integers a,b,c,d.
0

%I #4 Jul 14 2012 11:32:23

%S 49,70,105,145,150,166,196,214,225,241,249,280,294,321,406,409,420,

%T 441,454,505,580,600,601,609,630,664,681,694,721,726,745,769,784,841,

%U 856,870,886,889,900,934,945,964,996,1009,1030,1041,1089,1120,1126,1129

%N Intersection of A154778 and A155716: N = a^2 + 5b^2 = c^2 + 6d^2 for some positive integers a,b,c,d.

%o (PARI) isA155713(n,/* optional 2nd arg allows us to get other sequences */c=[6,5]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}

%o for( n=1,999, isA155713(n) & print1(n","))

%Y Cf. A000404, A154777, A092572, A097268, A154778, A155716, A155717, A155560-A155578.

%K easy,nonn

%O 1,1

%A _M. F. Hasler_, Jan 25 2009