[go: up one dir, main page]

login
A140805
Triangle T(n, k) read by rows T(n,k) = binomial(n, k)^binomial(n, k).
0
1, 1, 1, 1, 4, 1, 1, 27, 27, 1, 1, 256, 46656, 256, 1, 1, 3125, 10000000000, 10000000000, 3125, 1, 1, 46656, 437893890380859375, 104857600000000000000000000, 437893890380859375, 46656, 1, 1, 823543, 5842587018385982521381124421
OFFSET
1,5
COMMENTS
Sequence of coefficients inspired by the Belyi transform: x'->(m + n)^(n + m)*x^m*(1 - x)^n/(m^m*n^n).
Row sums are: 1, 2, 6, 56, 47170, 20000006252, 104857600875787780761812064, ...
These symmetrical coefficients remind one of Calabi-Yau base Hodge Diamond matrices. These numbers get large very fast.
REFERENCES
Leila Schneps (editor), The Grothendieck Theory of Dessins D'enfants, London Mathematical Society, Cambridge Press, page 49.
FORMULA
T(n,k) = binomial(n, k)^binomial(n, k).
EXAMPLE
{1},
{1, 1},
{1, 4, 1},
{1, 27, 27, 1},
{1, 256, 46656, 256, 1},
{1, 3125, 10000000000, 10000000000, 3125, 1},
MATHEMATICA
Clear[t, n, m, a] t[n_, m_] = Binomial[n, m]^Binomial[n, m]; a = Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[a]
CROSSREFS
Cf. A007318.
Sequence in context: A088158 A136449 A209427 * A113370 A078536 A173918
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved