[go: up one dir, main page]

login
A113370
Triangle P, read by rows, such that P^3 transforms column k of P into column k+1 of P, so that column k of P equals column 0 of P^(3*k+1), where P^3 denotes the matrix cube of P.
28
1, 1, 1, 1, 4, 1, 1, 28, 7, 1, 1, 326, 91, 10, 1, 1, 5702, 1722, 190, 13, 1, 1, 136724, 43764, 4945, 325, 16, 1, 1, 4226334, 1415799, 163705, 10751, 496, 19, 1, 1, 161385532, 56096733, 6617605, 437723, 19896, 703, 22, 1, 1, 7378504140, 2644883675
OFFSET
0,5
COMMENTS
Triangle A114150 illustrates the identity: R^2*Q^-1 = Q^3*P^-2.
See also A114152 for the matrix product: R^3*P^-1.
FORMULA
Let [P^m]_k denote column k of matrix power P^m,
so that triangular matrix P may be defined by
[P]_k = [P^(3*k+1)]_0, k>=0.
Define the triangular matrix Q = A113381 by
[Q]_k = [P^(3*k+2)]_0, k>=0.
Define the triangular matrix R = A113389 by
[R]_k = [P^(3*k+3)]_0, k>=0.
Then P, Q and R are related by:
Q^2 = R*P = R*Q*(R^-2)*Q*R = P*Q*(P^-2)*Q*P,
P^2 = Q*(R^-2)*Q^3, R^2 = Q^3*(P^-2)*Q.
Amazingly, columns in powers of P, Q, R, obey:
[P^(3*j+1)]_k = [P^(3*k+1)]_j,
[Q^(3*j+1)]_k = [P^(3*k+2)]_j,
[R^(3*j+1)]_k = [P^(3*k+3)]_j,
[Q^(3*j+2)]_k = [Q^(3*k+2)]_j,
[R^(3*j+2)]_k = [Q^(3*k+3)]_j,
[R^(3*j+3)]_k = [R^(3*k+3)]_j,
for all j>=0, k>=0.
Also, we have the column transformations:
P^3 * [P]_k = [P]_{k+1},
P^3 * [Q]_k = [Q]_{k+1},
P^3 * [R]_k = [R]_{k+1},
Q^3 * [P^2]_k = [P^2]_{k+1},
Q^3 * [Q^2]_k = [Q^2]_{k+1},
Q^3 * [R^2]_k = [R^2]_{k+1},
R^3 * [P^3]_k = [P^3]_{k+1},
R^3 * [Q^3]_k = [Q^3]_{k+1},
R^3 * [R^3]_k = [R^3]_{k+1},
for all k>=0.
EXAMPLE
Triangle P begins:
1;
1,1;
1,4,1;
1,28,7,1;
1,326,91,10,1;
1,5702,1722,190,13,1;
1,136724,43764,4945,325,16,1;
1,4226334,1415799,163705,10751,496,19,1;
1,161385532,56096733,6617605,437723,19896,703,22,1;
1,7378504140,2644883675,317416204,21179483,960696,33136,946,25,1;
Matrix cube P^3 (A113378) starts:
1;
3,1;
15,12,1;
136,168,21,1;
1998,3190,483,30,1;
41973,80136,13615,960,39,1; ...
where P^3 transforms column k of P into column k+1 of P:
at k=0, [P^3]*[1,1,1,1,1,...] = [1,4,28,326,5702,...];
at k=1, [P^3]*[1,4,28,326,5702,...] = [1,7,91,1722,43764,...].
PROG
(PARI) P(n, k)=local(A, B); A=Mat(1); for(m=2, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(i<3 || j==i || j>m-1, B[i, j]=1, if(j==1, B[i, 1]=1, B[i, j]=(A^(3*j-2))[i-j+1, 1])); )); A=B); A[n+1, k+1]
CROSSREFS
Cf. A113371 (column 1), A113372 (column 2), A113373 (column 3).
Cf. A113374 (P^2), A113378 (P^3), A113381 (Q), A113384 (Q^2), A113387 (Q^3), A113389 (R), A113392 (R^2), A113394 (R^3), A114156 (P^-1).
Cf. A114150 (R^2*Q^-1=Q^3*P^-2), A114152 (R^3*P^-1).
Cf. variants: A113340, A113350.
Sequence in context: A136449 A209427 A140805 * A078536 A173918 A174412
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Nov 14 2005
STATUS
approved