[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137398 Let S be a strictly monotonic sequence of length 2n and let p and q be subsequences of S each of length n such that the least element belongs to p and every element of S belongs to either p or q. The number of ways to select p such that for any index i the exchange of p(i) and q(i) makes at least one of p and q non-monotonic, is given by a(n). 2
0, 1, 2, 7, 22, 74, 252, 875, 3078, 10950, 39316, 142278, 518364, 1899668, 6997688, 25894579, 96211398, 358779118, 1342323364, 5037146738, 18953759988, 71497359884, 270321915848, 1024217489278, 3888253473180, 14787937448380, 56337410614088, 214967841333868, 821473056041464, 3143521372849960 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
The sequence occurs as the diagonal of the triangle below.
0;
0, 1;
0, 1, 2;
0, 1, 3, 7;
0, 1, 4, 11, 22;
0, 1, 5, 16, 38, 74;
0, 1, 6, 22, 60, 134, 252;
0, 1, 7, 29, 89, 223, 475, 875;
The triangle is generated by:
b(n,0) = 0;
b(n,1) = 1;
b(n,k) = 2*b(k-2,k-2) + Sum_{i=k-1..n} b(i,k-1) for 2 <= k <= n;
or alternatively, for 2 <= k < n either b(n,k) = b(n,k-1) + b(n-1,k) or b(n,k) = Sum_{i=1..k} b(n-1,i) and b(n,n) = b(n-1,n-1) + 2*b(n-2,n-2) + b(n,n-1).
Let g(x) = 1/(1-2x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-... (continued fraction). Then g.f. appears to be g(x)-1. - Paul Barry, Jan 22 2009
With offset 1, a(n) is the number of (2n)-step Grand Dyck paths (consisting of n upsteps U = (1,1) and n downsteps D = (1,-1), hence counted by central binomial coefficients A000984), that start with an upstep and have no peak vertex at height 1 nor valley vertex at height -1. For example, a(3) = 2 counts UUUDDD, UUDUDD, and a(4) = 7 counts UUUUDDDD, UUUDUDDD, UUUDDUDD, UUDUUDDD, UUDUDUDD, UUDDUUDD, UUDDDDUU. The generating function F = F(x) for such paths satisfies the equation: F = x*(C-1) + 2*x*(C-1)*F, where C = C(x) is the g.f. for Dyck paths A000108 (consider the first return to ground level). - David Callan, Nov 25 2021
LINKS
FORMULA
a(1)=0, a(2)=1, a(3)=2, a(n) = 2*a(n-1) + 2*a(n-2) + Sum_{k=1..n-3} C(k)*a(n-k-1), where C(k) is the k-th Catalan number.
G.f.: 2*x^2 / (1 - 2*x - 4*x^2 + sqrt(1 - 4*x)).
EXAMPLE
a(6) = 74 = 2*a(5) + 2*a(4) + c(1)*a(4) + c(2)*a(3) + c(3)*a(2) = 2(22) + 2(7) + 1(7) + 2(2) + 5(1) = 44 + 14 + 7 + 4 + 5.
From Andrew Howroyd, Jun 07 2021: (Start)
The a(2) = 1 p/q subsequences of 1234 are 12/34.
The a(3) = 2 p/q subsequences of 123456 are 123/456, 124/356.
(End)
MAPLE
a:= proc(n) option remember; `if`(n<3, n-1, 2*(a(n-1)+a(n-2))+
add(binomial(2*i, i+1)/i*a(n-i-1), i=1..n-3))
end:
seq(a(n), n=1..30); # Alois P. Heinz, Jun 07 2021
MATHEMATICA
CoefficientList[Series[2x / (1 - 2*x - 4*x^2 + Sqrt[1 - 4*x]), {x, 0, 40}], x] (* Georg Fischer, Jun 07 2021 *)
PROG
(PARI) seq(n)={Vec(2/(1 - 2*x - 4*x^2 + sqrt(1 - 4*x + O(x^(n-1)))), -n)} \\ Andrew Howroyd, Jun 07 2021
CROSSREFS
Cf. A000108.
Sequence in context: A293809 A307976 A114495 * A151439 A204218 A007141
KEYWORD
nonn
AUTHOR
Gordon Beavers (gordonb(AT)uark.edu), G. Starling (starling(AT)uark.edu) and W. Li (wingning(AT)uark.edu), Apr 11 2008, May 15 2008
EXTENSIONS
Offset, a(15), a(18) corrected by and more terms from Georg Fischer, Jun 07 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 30 13:06 EDT 2024. Contains 375543 sequences. (Running on oeis4.)