[go: up one dir, main page]

login
Search: a137398 -id:a137398
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = (2*n^3 + 3*n^2 + n + 3)/3.
+10
4
1, 3, 11, 29, 61, 111, 183, 281, 409, 571, 771, 1013, 1301, 1639, 2031, 2481, 2993, 3571, 4219, 4941, 5741, 6623, 7591, 8649, 9801, 11051, 12403, 13861, 15429, 17111, 18911, 20833, 22881, 25059, 27371, 29821, 32413, 35151, 38039, 41081, 44281, 47643
OFFSET
0,2
COMMENTS
Hankel transform of A137398(n+1) (conjecture).
FORMULA
G.f.: (1 - x + 5*x^2 - x^3)/(1-x)^4.
a(n) = A006331(n) + 1. - Bruno Berselli, Nov 14 2011
MAPLE
A188475:=n->(2*n^3+3*n^2+n+3)/3; seq(A188475(n), n=0..100); # Wesley Ivan Hurt, Nov 11 2013
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {1, 3, 11, 29}, 100] (* Vincenzo Librandi, Nov 25 2011 *)
PROG
(Magma) [(2*n^3+3*n^2+n+3)/3: n in [0..50]]; // Vincenzo Librandi, Nov 25 2011
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Apr 01 2011
STATUS
approved
A generalized Deutsch triangle.
+10
2
1, 1, 1, 1, 5, 1, 1, 10, 10, 1, 1, 16, 40, 16, 1, 1, 23, 102, 102, 23, 1, 1, 31, 209, 393, 209, 31, 1, 1, 40, 376, 1122, 1122, 376, 40, 1, 1, 50, 620, 2656, 4296, 2656, 620, 50, 1, 1, 61, 960, 5536, 13100, 13100, 5536, 960, 61, 1, 1, 73, 1417, 10522, 34036, 50180, 34036, 10522, 1417, 73, 1
OFFSET
0,5
COMMENTS
Member r=2 of the family of "Pascal-like" triangles with T(n,k)=sum{j=0..n-k+1, (j/(n+2-j))*C(n+2-j,n-k+1)*C(n+2-j,k+1)*r^(j-1)}.
The Deutsch triangle A100754 corresponds to r=1.
Row sums are A137398(n+1) (conjecture). Diagonal sums are A188476.
FORMULA
T(n,k)=sum{j=0..n-k+1, (j/(n+2-j))*C(n+2-j,n-k+1)*C(n+2-j,k+1)*2^(j-1)}.
EXAMPLE
Triangle begins
1,
1, 1,
1, 5, 1,
1, 10, 10, 1,
1, 16, 40, 16, 1,
1, 23, 102, 102, 23, 1,
1, 31, 209, 393, 209, 31, 1,
1, 40, 376, 1122, 1122, 376, 40, 1,
1, 50, 620, 2656, 4296, 2656, 620, 50, 1,
1, 61, 960, 5536, 13100, 13100, 5536, 960, 61, 1,
1, 73, 1417, 10522, 34036, 50180, 34036, 10522, 1417, 73, 1
KEYWORD
nonn,easy,tabl
AUTHOR
Paul Barry, Apr 01 2011
STATUS
approved

Search completed in 0.006 seconds