[go: up one dir, main page]

login
A137396
Triangle read by rows: row n gives the coefficients in the expansion of the chromatic polynomial of the n-cycle graphs.
6
0, 0, -1, 1, 0, 2, -3, 1, 0, -3, 6, -4, 1, 0, 4, -10, 10, -5, 1, 0, -5, 15, -20, 15, -6, 1, 0, 6, -21, 35, -35, 21, -7, 1, 0, -7, 28, -56, 70, -56, 28, -8, 1, 0, 8, -36, 84, -126, 126, -84, 36, -9, 1, 0, -9, 45, -120, 210, -252, 210, -120, 45, -10, 1, 0, 10
OFFSET
1,6
COMMENTS
The chromatic polynomial of an n-cycle graph is p(x;n) = (x - 1)^n + (-1)^n*(x - 1). - Franck Maminirina Ramaharo, Aug 11 2018
REFERENCES
Louis H. Kauffman, Knots and Physics (Third Edition), World Scientific, 2001. See p. 353.
LINKS
Franck Ramaharo, Note on sequences A123192, A137396 and A300453, arXiv:1911.04528 [math.CO], 2019.
Eric Weisstein's World of Mathematics, Chromatic Polynomial
Eric Weisstein's World of Mathematics, Cycle Graph.
FORMULA
p(x;n) = (x - 2)*p(x;n-1) + (x - 1)*p(x;n-2).
From Franck Maminirina Ramaharo, Aug 11 2018: (Start)
T(n,0) = 0 for n > 0, and T(n,1) = (n-1)*(-1)^(n-1) for n > 1.
T(n,k) = (-1)^(n - k)*binomial(n,k) for k > 1. (End)
EXAMPLE
Triangle begins:
n\k| 0 1 2 3 4 5 6 7 8 9 10 11
----------------------------------------------------------------
1 | 0
2 | 0 -1 1
3 | 0 2 -3 1
4 | 0 -3 6 -4 1
5 | 0 4 -10 10 -5 1
6 | 0 -5 15 -20 15 -6 1
7 | 0 6 -21 35 -35 21 -7 1
8 | 0 -7 28 -56 70 -56 28 -8 1
9 | 0 8 -36 84 -126 126 -84 36 -9 1
10 | 0 -9 45 -120 210 -252 210 -120 45 -10 1
11 | 0 10 -55 165 -330 462 -462 330 -165 55 -11 1
... reformatted and extended. - Franck Maminirina Ramaharo, Aug 11 2018
PROG
(Maxima)
t(n, k) := ratcoef((x - 1)^n + (-1)^n*(x - 1), x, k)$
T:[0]$
for n:2 thru 11 do T:append(T, makelist(t(n, k), k, 0, n))$
T; /* Franck Maminirina Ramaharo, Aug 11 2018 */
CROSSREFS
Sequence in context: A352799 A082839 A130717 * A244213 A346415 A362894
KEYWORD
tabf,sign
AUTHOR
Roger L. Bagula, Apr 10 2008
EXTENSIONS
Edited, new name, and corrected by Franck Maminirina Ramaharo, Aug 11 2018
STATUS
approved