[go: up one dir, main page]

login
A114496
a(n) = Sum of binomial(n,k)*binomial(2n+k,k) over all k.
12
1, 4, 26, 190, 1462, 11584, 93536, 765314, 6323270, 52638760, 440815036, 3709445084, 31340292076, 265683004240, 2258793820988, 19251776923210, 164440378882630, 1407266585304760, 12063701803046300, 103571977632247076
OFFSET
0,2
COMMENTS
Modification of A001850 inspired by the Apéry numbers A005259.
From Paul Barry, Feb 17 2009: (Start)
Central coefficient of (1 + 4x + 5x^2 + 2x^3)^n. The coefficients are the 4th row of A029635.
The third row of A029635 corresponds to the central Delannoy numbers A001850. (End)
LINKS
P. Barry, A Note on a Family of Generalized Pascal Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.4.
FORMULA
a(n) = Sum_{k=0..n} (binomial(n,k)*binomial(2n+k,k)).
Recurrence: 20*n*(2*n - 1)*a(n) = (371*n^2 - 411*n + 120)*a(n-1) -2*(81*n^2 - 299*n + 278)*a(n-2) + 4*(n-2)*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ sqrt(1734 + 442*sqrt(17))*((71 + 17*sqrt(17))/16)^n/(68*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 19 2012
From Peter Bala, Oct 05 2015: (Start)
a(n) = Sum_{i = 0..n} 2^(n-i)*binomial(2*n,i)*binomial(n,i).
4*n*(2*n - 1)*(17*n - 23)*a(n) = (1207*n^3 - 2840*n^2 + 1897*n - 360)*a(n-1) - 2*(n - 1)*(17*n - 6)*(2*n - 3)*a(n-2) with a(0) = 1 and a(1) = 4.
1 + x*exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 4*x^2 + 21*x^3 + 126*x^4 + ... is the o.g.f. for A003168. (End)
MATHEMATICA
Table[Sum[Binomial[n, k]*Binomial[2n+k, k], {k, 0, n}], {n, 0, 25}]
PROG
(PARI) a(n) = sum(k=0, n, 2^(n-k)*binomial(2*n, k)*binomial(n, k));
vector(50, n, a(n-1)) \\ Altug Alkan, Oct 05 2015
CROSSREFS
Cf. A156886. - Paul Barry, Feb 17 2009
Sequence in context: A052763 A213101 A084211 * A127086 A198024 A278393
KEYWORD
nonn,easy
AUTHOR
Eric Rowland, Dec 01 2005
STATUS
approved