[go: up one dir, main page]

login
A213101
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^8)^4.
17
1, 1, 4, 26, 188, 1627, 15172, 154904, 1670836, 18951217, 222682164, 2693625128, 33309537808, 419311915217, 5354144473084, 69169422070152, 902237854706616, 11863641066687085, 157052133090437332, 2090929291636792824, 27971914781646817864, 375725009230868446500
OFFSET
0,3
COMMENTS
Compare definition of g.f. to:
(1) B(x) = 1 + x/B(-x*B(x)) when B(x) = 1/(1-x).
(2) C(x) = 1 + x/C(-x*C(x)^3)^2 when C(x) = 1 + x*C(x)^2 (A000108).
(3) D(x) = 1 + x/D(-x*D(x)^5)^3 when D(x) = 1 + x*D(x)^3 (A001764).
(4) E(x) = 1 + x/E(-x*E(x)^7)^4 when E(x) = 1 + x*E(x)^4 (A002293).
(5) F(x) = 1 + x/F(-x*F(x)^9)^5 when F(x) = 1 + x*F(x)^5 (A002294).
The first negative term is a(249). - Georg Fischer, Feb 16 2019
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 26*x^3 + 188*x^4 + 1627*x^5 + 15172*x^6 +...
Related expansions:
A(x)^8 = 1 + 8*x + 60*x^2 + 488*x^3 + 4150*x^4 + 37600*x^5 + 358788*x^6 +...
A(-x*A(x)^8)^4 = 1 - 4*x - 10*x^2 - 44*x^3 - 439*x^4 - 3884*x^5 - 42724*x^6 -...
MATHEMATICA
m = 22; A[_] = 1; Do[A[x_] = 1 + x/A[-x A[x]^8]^4 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1+x/subst(A^4, x, -x*subst(A^8, x, x+x*O(x^n))) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jun 05 2012
STATUS
approved