OFFSET
1,2
LINKS
FORMULA
EXAMPLE
a(64) = 5, as 64 = 2^6 = 2^(2^1*3^1) and there are 5 nodes in that superfactorization. Similarly, for 360 = 2^(3^1) * 3^(2^1) * 5^1 we get a(360) = 8. See comments at A106490.
MAPLE
a:= proc(n) option remember; `if`(n=1, 1,
add(1+a(i[2]), i=ifactors(n)[2]))
end:
seq(a(n), n=1..100); # Alois P. Heinz, Nov 07 2014
MATHEMATICA
a[n_] := a[n] = If[n == 1, 1, Sum[1 + a[i[[2]]], {i, FactorInteger[n]}]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
PROG
(Scheme, with memoization-macro definec)
(definec (A106491 n) (cond ((= 1 n) n) ((= 1 (A028234 n)) (+ 1 (A106491 (A067029 n)))) (else (+ 1 (A106491 (A067029 n)) (A106491 (A028234 n)))))) ;; Antti Karttunen, Mar 23 2017
(PARI)
A067029(n) = if(n<2, 0, factor(n)[1, 2]);
A028234(n) = my(f = factor(n)); if (#f~, f[1, 1] = 1); factorback(f); /* after Michel Marcus */
for(n=1, 150, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 23 2017, after formula by Antti Karttunen
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 09 2005 based on Leroy Quet's message ('Super-Factoring' An Integer) posted to SeqFan-mailing list on Dec 06 2003.
STATUS
approved