[go: up one dir, main page]

login
A106489
Triangle read by rows: T(n,k) is the number of short bushes with n edges and having the leftmost leaf at height k (a short bush is an ordered tree with no nodes of outdegree 1).
0
1, 1, 2, 1, 4, 2, 9, 5, 1, 21, 12, 3, 51, 30, 9, 1, 127, 76, 25, 4, 323, 196, 69, 14, 1, 835, 512, 189, 44, 5, 2188, 1353, 518, 133, 20, 1, 5798, 3610, 1422, 392, 70, 6, 15511, 9713, 3915, 1140, 230, 27, 1, 41835, 26324, 10813, 3288, 726, 104, 7, 113634, 71799, 29964
OFFSET
2,3
COMMENTS
Basically, the mirror image of A020474. Row n has floor(n/2) terms (first row is row 2). Row sums yield the Riordan numbers (A005043). Column 1 yields the Motzkin numbers (A001006); column 2 yields A002026; column 3 yields A005322; column 4 yields A005323; column 4 yields A005324; column 5 yields A005325; column 6 yields A005326.
T(n,k) is the number of Riordan paths (Motzkin paths with no flatsteps on the x-axis) with k returns to the x-axis. For example, T(6,2) = 5 counts UDUFFD, UDUUDD, UFDUFD, UFFDUD, UUDDUD where U = (1,1) is an upstep, F = (1,0) is a flatstep, and D = (1,-1) is a downstep. - David Callan, Dec 12 2021
LINKS
F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999), 73-112.
Sen-Peng Eu, Shu-Chung Liu, and Yeong-Nan Yeh, Taylor expansions for Catalan and Motzkin numbers, Advances in Applied Mathematics 29, Issue 3 (2002), 345-357 (see p. 352).
FORMULA
G.f.: tz^2*S/(1 - zS - tz^2*S), where S = S(z) = (1 + z - sqrt(1 - 2z - 3z^2))/(2z(1+z)) is the g.f. of the short bushes (the Riordan numbers; A005043).
a(n,k) = T(n-k+1, n-2*k)*(k+1)/(n-k+1), for n >= 2k, where T(n,k) = A027907(n,k) are the trinomial coefficients. - Emanuele Munarini, Feb 10 2018
EXAMPLE
Column 1 yields the Motzkin numbers: indeed, if from each short bush, having leftmost leaf at height 1, we drop the leftmost edge, then we obtain the so-called bushes, known to be counted by the Motzkin numbers.
Triangle begins:
1;
1;
2, 1;
4, 2;
9, 5, 1;
21, 12, 3;
51, 30, 9, 1.
MAPLE
S:=1/2/(z+z^2)*(1+z-sqrt(1-2*z-3*z^2)): G:=simplify(t*z^2*S/(1-z*S-t*z^2*S)): Gserz:=simplify(series(G, z=0, 19)): for n from 2 to 17 do P[n]:=sort(coeff(Gserz, z^n)) od: for n from 2 to 17 do seq(coeff(P[n], t^k), k=1..floor(n/2)) od; # yields sequence in triangular form
MATHEMATICA
(* To generate the sequence *)
CoefficientList[CoefficientList[Series[(1-t-2xt^2-Sqrt[1-2t-3t^2])/(2t^2(1-x+xt+x^2t^2)), {t, 0, 10}], t], x] // Flatten
(* To generate the triangle *)
CoefficientList[Series[(1-t-2xt^2-Sqrt[1-2t-3t^2])/(2t^2(1-x+xt+x^2t^2)), {t, 0, 10}], {t, x}] // MatrixForm
Table[If[n < 2 k, 0, GegenbauerC[n-2k, -n+k-1, -1/2](k+1)/(n-k+1)], {n, 0, 10}, {k, 0, 5}] // MatrixForm
(* Emanuele Munarini, Feb 10 2018 *)
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 29 2005
STATUS
approved