[go: up one dir, main page]

login
A094028
Expansion of 1/((1-x)*(1-100*x)).
57
1, 101, 10101, 1010101, 101010101, 10101010101, 1010101010101, 101010101010101, 10101010101010101, 1010101010101010101, 101010101010101010101, 10101010101010101010101, 1010101010101010101010101, 101010101010101010101010101, 10101010101010101010101010101
OFFSET
0,2
COMMENTS
Regarded as binary numbers and converted to decimal, these become 1,5,21,85,... the partial sums of 4^n (see A002450).
Partial sums of 100^n.
Odd terms of A056830. - Alexandre Wajnberg, May 31 2005
101 is the only term that is prime, since (100^k-1)/99 = (10^k+1)/11 * (10^k-1)/9. When k is odd and not 1, (10^k+1)/11 is an integer > 1 and thus (100^k-1)/99 is nonprime. When k is even and greater than 2, (100^k-1)/99 has the prime factor 101 and is nonprime. - Felix Fröhlich, Oct 17 2015
Previous comment is the answer to the problem A1 proposed during the 50th Putnam Competition in 1989 (link). - Bernard Schott, Mar 24 2023
REFERENCES
Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
G.f.: 1/((1-x)*(1-100*x)).
a(n) = 1+100*(100^n-1)/99. - N. J. A. Sloane, Apr 20 2008
a(n) = 100^(n+1)/99 - 1/99.
a(n) = A094027(2n+1).
a(n) = 100*a(n-1) + 1, a(0) = 1. - Philippe Deléham, Feb 22 2014
a(n) = 101*a(n-1)-100*a(n-2) for n>1. - Wesley Ivan Hurt, Oct 17 2015
a(n) = (100^(n+1) - 1)/99. - Bernard Schott, Apr 15 2021
EXAMPLE
From Omar E. Pol, Dec 13 2008: (Start)
=======================
n ....... a(n)
0 ........ 1
1 ....... 101
2 ...... 10101
3 ..... 1010101
4 .... 101010101
5 ... 10101010101
======================
(End)
MAPLE
A094028:=n->1+100*(100^n-1)/99: seq(A094028(n), n=0..15); # Wesley Ivan Hurt, Oct 17 2015
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-100x)), {x, 0, 20}], x] (* or *) Table[ FromDigits[ PadRight[{}, 2n-1, {1, 0}]], {n, 20}] (* or *) LinearRecurrence[ {101, -100}, {1, 101}, 20] (* or *) NestList[100#+1&, 1, 20] (* Harvey P. Dale, Apr 27 2015 *)
PROG
(Maxima) A094028(n):=1+100*(100^n-1)/99$
makelist(A094028(n), n, 0, 30); /* Martin Ettl, Nov 06 2012 */
(Magma) [1+100*(100^n-1)/99 : n in [0..15]]; // Wesley Ivan Hurt, Oct 17 2015
(PARI) a(n) = 1+100*(100^n-1)/99 \\ Felix Fröhlich, Oct 17 2015
(PARI) Vec(1/((1-x)*(1-100*x)) + O(x^100)) \\ Altug Alkan, Oct 17 2015
CROSSREFS
Bisection of A147759. [Omar E. Pol, Nov 13 2008]
Cf. similar sequences of the form (k^n-1)/(k-1) listed in A269025.
Sequence in context: A164367 A263244 A368417 * A144564 A261965 A255892
KEYWORD
easy,nonn,changed
AUTHOR
Paul Barry, Apr 22 2004
STATUS
approved