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Abstract. The characteristics within modular rings of the integer three are discussed.  This 
integer has unique row structures in modular rings which appear to underlie restraints on various 
aspects of triples, particularly the factors and powers structure of the components. The function 
N = xm+2n, with m even and n odd but x not divisible by 3, always has 3 as a factor, and a 
majority of elements of the sequence of triangular numbers {NT} are such that 3| NT.  The 
modular ring Z3 and the distribution of primes within its structure are also discussed. 
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1 Introduction 
 
The integer 3 can be described as historically interesting since it commonly features in 
mathematical games such as noughts and crosses and three-in-a-row [1]. Pythagorean triples 
have been studied since antiquity, and 3 is the first odd prime. There is also Bogolmy’s 
asymptotic result [2] that almost every integer has a 3 in it.  This was established by showing that 
Kn, the number of positive integers below 10n whose decimal numeral contains a digit 3, satisfies 
the first order recurrence relation 

,0,1091  nKK n
nn  (1.1) 

with initial condition K1 = 1, which has a solution  

,910 nn
nK   (1.2) 

and Kn/10n→1 as n→∞. Obviously, what is true for the digit 3 is also true for other non-zero 
digits. So, there "are more" numbers which contain a given digit than those that do not [4]. While 
this is a caveat and a bit of fun it does connect with Section 4 later.  In any case there is no 
ambiguity about the integer 3 in what follows. 

More germane to this paper, 3 is significant in integer structure [5], and unlike other 
integers, the squares of those which are divisible by 3 are elements of the sequence of triangular 
numbers in the modular ring Z4, whereas the squares of other integers are elements of the 
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sequence of pentagonal numbers in the same ring [5].  This functional disparity appears to be the 
critical constraint to the formation of triples when the power is greater than 2 [7]. 

Furthermore, one of the minor components of primitive Pythagorean triples always has a 
factor of 3, whereas the major component is not divisible by 3.  This is because the integers in 

Class )33(3 44  can never be a sum of squares [5,6,8,9]. 

 
 

2 Modular Ring Z6 
 
This modular ring (Table 2) has the advantage that integers divisible by 3 are located in one odd 

 66 and one even  63 class. Such classifications facilitate the analysis of functions such as  

nmxN 2  (2.1) 

(m even, n odd). 

 

f(r) 
04r  14 1 r 24 2 r 34 3 r 

Row Class 40  41  42  43  
0 0 1 2 3 
1 4 5 6 7 
2 8 9 10 11 
3 12 13 14 15 
4 16 17 18 19 
5 20 21 22 23 
6 24 25 26 27 
7 28 29 30 31 

Table 1: Rows of Z4 
 

 

f(r) 26 1 r
 

16 2 r
 

36r  16 4 r 26 5 r  36 6 r   
Row 

Class 61  62  63  64  65  66  
0 -2 -1 0 1 2 3 
1 4 5 6 7 8 9 
2 10 11 12 13 14 15 
3 16 17 18 19 20 21 
4 22 23 24 25 26 27 
5 28 29 30 31 32 33 
6 34 35 36 37 38 39 
7 40 41 42 43 44 45 

Table 2:  Rows of Z6 
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(a) If x is odd but not divisible by 3, then 64mx since 62 has no even powers, so that  

nRN 216 4    

    36 4  kR  (2.2)

with  
 12 1

3
1  nk  

n (odd) and k non-negative integers, k = 0,1,5,21,85… . Hence 3|N because 66N . k is a repunit 
of base 4 [11] when for any non-negative integer m: 

 14 1
3
1  mk  

(b) If x is even but not divisible by 3, then 61mx since has no even powers, so that  65
nRN 226 1    

 kR  16  (2.3)

with k as before. Hence 3|N because 63N .  
 Note that the ‘k sequence’ {kn} satisfies the second order recurrence relation 

,1,45 11   nkkk nnn  

with initial conditions k1 = 0, k2 = 1. The kn are elements of the sequence {n(3n-2)} sometimes 
called generalized octagonal numbers [10], but {kn} is more famous as the binary sequence 
{0,1,101,10101,1010101,…}. 
 
 

3 Powers of 3 in Z6 
 
The rows R6 of 3n (n odd or even) are given by the recurrence relations: 








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(3.1) 

(3.2)
 

 

4 Triangular Numbers 
 
The triangular numbers, NT, are given by 

 12
1  nnNT  (4.1)

 

T 1 2 3 4 5 6 7 8 9 10 11 
NT 1 3 6 10 15 21 28 36 45 55 66 
3 as a factor  X X  X X  X X  X 

Table 3: Triangular numbers divisible by 3 
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Divisibility occurs for 






3

2
3tn . 

(4.2) 

(4.3)

The remaining triangular numbers (uncrossed in Table 3) have 3|  
nn TT NN 

1
with n = 3t + 1. 

 

5 Modular Ring Z3 
 
If we limit ourselves to 3 columns (Table 4), then each class has even and odd integers. 
 

f(r) 
03r  13 1 r  23 2 r     

Row Class 30  31  32    

0 0 1 2   
1 3 4 5   
2 6 7 8   
3 9 10 11   
4 12 13 14   
5 15 16 17   
6 18 19 20   
7 21 22 23   

Table 4: Rows of Z3 

 

When 3 divides N, the integers all belong to Class 30 . 

When 3 does not divide N, odd powers and primes belong to Classes 31 , 32 . 

When 3 does not divide Nm (m even), Nm belongs to Class 31 ; for example: 
 

    1143323 3
2

3
2

2  rrr . (5.1)

In Class 31 odd numbers fall in even rows of Table 4, while in Class 32 odd numbers fall in 
odd rows of Table 4.  

Rows with the right-end-digit (RED) equal to 8 in)8( *
1 r 31 cannot contain primes, and 

rows with in1*
2 r 32 cannot contain primes. This is because one of the integers in these rows has 

a factor of 5. 

In a sense because 32 has no even powers there will be more vacancies for primes and it can 

be expected that more primes fall in Class 32 , just as in Z4 more primes fall in 

Class 43 than 41 as 43 has no even powers [5]. For example, for the range up to 500 there are 44 

primes in 31 and 48 in 32 . 
Other modular rings could be similarly investigated, just as the ‘Chess’ ring, Z8, has been 
discussed previously [4,5]. 
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