[go: up one dir, main page]

login
A077773
Number of integers between n^2 and (n+1)^2 that are the sum of two squares; multiple representations are counted once.
19
0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 6, 9, 8, 8, 10, 10, 11, 11, 12, 11, 14, 12, 13, 15, 16, 15, 15, 17, 16, 17, 19, 18, 19, 20, 19, 20, 21, 20, 22, 22, 24, 22, 25, 23, 26, 26, 24, 29, 26, 27, 28, 27, 29, 26, 31, 32, 30, 29, 33, 33, 31, 31, 35, 34, 35, 35, 35, 36, 37, 37, 33, 42, 37, 38
OFFSET
0,3
COMMENTS
Related to the circle problem, cf. A077770. See A077774 for a more restrictive case. A077768 counts the representations multiply.
Number of integers k in range [n^2, ((n+1)^2)-1] for which 2 = the least number of squares that add up to k (A002828). Because of this interpretation a(0)=0 was prepended to the beginning. - Antti Karttunen, Oct 04 2016
This sequence is not surjective, since, for instance, there is no n such that a(n) = 46. This follows from a bound observed by Jon E. Schoenfield, that if a(n) = m then n < ((m+1)^2)/2, and the fact that a(n) != 46 for all n < 1105. - Rainer Rosenthal, Jul 25 2023
LINKS
Hugo Pfoertner, Table of n, a(n) for n = 0..10000 (terms 0..1024 from T. D. Noe and Antti Karttunen).
Rainer Rosenthal, Illustrating A077773
FORMULA
a(n) = Sum_{i=n^2+1..(n+1)^2-1} A229062(i). - Ralf Stephan, Sep 17 2013
From Antti Karttunen, Oct 04 2016: (Start)
For n >= 0, a(n) + A277193(n) + A277194(n) = 2n.
For n >= 1, A277192(n) = a(n) + A277194(n). (End)
EXAMPLE
a(8)=6 because 65=64+1=49+16, 68=64+4, 72=36+36, 73=64+9, 74=49+25 and 80=64+16 are between squares 64 and 81. Note that 65 is counted only once.
MATHEMATICA
maxN=100; lst={}; For[n=1, n<=maxN, n++, sqrs={}; i=n; j=0; While[i>=j, j=1; While[i^2+j^2<(n+1)^2, If[i>=j&&i^2+j^2>n^2, AppendTo[sqrs, i^2+j^2]]; j++ ]; i--; j-- ]; AppendTo[lst, Length[Union[sqrs]]]]; lst
PROG
(PARI) a(N)=s=0; for(n=N^2+1, (N+1)^2-1, f=0; r=sqrtint(n); forstep(i=r, 1, -1, if(issquare(n-i*i), f=1; s=s+1; break))); s /* Ralf Stephan, Sep 17 2013 */
(Scheme)
(define (A077773 n) (add (lambda (i) (* (- 1 (A010052 i)) (A229062 i))) (A000290 n) (+ -1 (A000290 (+ 1 n)))))
;; Implements sum_{i=lowlim..uplim} intfun(i)
(define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))
;; Antti Karttunen, Oct 04 2016
(Python)
from sympy import factorint
def A077773(n): return sum(1 for m in range(n**2+1, (n+1)**2) if all(p==2 or p&3==1 or e&1^1 for p, e in factorint(m).items())) # Chai Wah Wu, Jun 20 2023
CROSSREFS
Cf. A363762 (terms not occurring in this sequence), A363763.
Sequence in context: A081608 A096532 A335380 * A308754 A339187 A309430
KEYWORD
nonn
AUTHOR
T. D. Noe, Nov 20 2002
EXTENSIONS
Term a(0)=0 prepended by Antti Karttunen, Oct 04 2016
STATUS
approved