[go: up one dir, main page]

login
A077772
Continued fraction expansion of the ternary Champernowne constant.
7
0, 1, 1, 2, 37, 1, 162, 1, 1, 1, 3, 1, 7, 1, 9, 2, 3, 1, 3068518062211324, 2, 1, 2, 6, 13, 1, 2, 1, 3, 1, 10, 1, 21, 1, 1, 4, 3, 577, 1, 1079268324684171943515797470873767312825026176345571319042096689270, 1, 1, 1, 3, 4, 21, 3, 1, 9, 1
OFFSET
0,4
LINKS
John K. Sikora, Table of n, a(n) for n = 0..2061 (terms n = 0..1155 from Robert G. Wilson v)
Eric Weisstein's World of Mathematics, Ternary Champernowne Constant
MATHEMATICA
almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Take[ ContinuedFraction[ FromDigits[ {Array[almostNatural[#, 3] &, 20000], 0}, 3]], 100] (* Robert G. Wilson v, Jul 21 2014 *)
PROG
(PARI) \p 10000
t=0; r=0.; T=1; for(n=1, 1e6, d=#digits(n, 3); t+=d; T*=3^d; r+=n/T; if(t>20959, return)); v=contfrac(r); v[1..30] \\ Charles R Greathouse IV, Sep 23 2014
(PARI) A077772(b=3, t=1., s=b)={contfrac(sum(n=1, default(realprecision)*2.303/log(b)+1, n<s||s*=b; n*t/=s))} \\ First optional arg allows us to get the c.f. of C[b] for other bases. - M. F. Hasler, Oct 25 2019
CROSSREFS
Cf. A054635 (ternary digits), A077771 (decimals).
Cf. A030190, A066716, A066717: binary digits, decimals and continued fraction of the binary Champernowne constant; A033307: decimal Champernowne constant.
Sequence in context: A358972 A073581 A078081 * A083150 A066146 A258035
KEYWORD
nonn,base,cofr
AUTHOR
Eric W. Weisstein, Nov 15 2002
STATUS
approved