[go: up one dir, main page]

login
A075317
Pair the odd numbers such that the k-th pair is (r, r+2k) where r is the smallest odd number not included earlier: (1,3),(5,9),(7,13),(11,19),(15,25),(17,29),(21,35),(23,39),(27,45),... This is the sequence of the first member of pairs.
5
1, 5, 7, 11, 15, 17, 21, 23, 27, 31, 33, 37, 41, 43, 47, 49, 53, 57, 59, 63, 65, 69, 73, 75, 79, 83, 85, 89, 91, 95, 99, 101, 105, 109, 111, 115, 117, 121, 125, 127, 131, 133, 137, 141, 143, 147, 151, 153, 157, 159, 163, 167, 169, 173, 175, 179, 183, 185, 189, 193
OFFSET
1,2
COMMENTS
(a(n), A075318(n)) = (2A(n)-1, 2B(n)-1), where A and B are the basic Wythoff sequences A(n)=A000201(n) and B(n)=A001950(n). For a proof cf. Section 2 of the Carlitz et al. paper. - Michel Dekking, Sep 05 2016
LINKS
L. Carlitz, R. Scoville and V. E. Hoggatt, Jr., Fibonacci representations, Fib. Quart. 10 (1972), 1-28.
FORMULA
a(n) = 2*floor(n*phi)-1, where phi=(1+sqrt(5))/2. - Michel Dekking, Sep 05 2016
MAPLE
A075317 := proc(nmax) local r, k, a, pairs ; a := [1] ; pairs := [1, 3] ; k := 2 ; r := 5 ; while nops(a) < nmax do while r in pairs do r := r+2 ; od ; a := [op(a), r] ; if r+2*k in pairs then printf("inconsistency", k) ; fi ; pairs := [op(pairs), r, r+2*k] ; k := k+1 ; od ; RETURN(a) ; end: a := A075317(200) ; for n from 1 to nops(a) do printf("%d, ", op(n, a)) ; od ; # R. J. Mathar, Nov 12 2006
MATHEMATICA
Table[2 Floor[n (1 + Sqrt[5]) / 2] - 1, {n, 80}] (* Vincenzo Librandi, Sep 05 2016 *)
PROG
(Magma) [2*Floor(n*(1+Sqrt(5))/2)-1: n in [1..60]]; // Vincenzo Librandi, Sep 05 2016
(Python)
from math import isqrt
def A075317(n): return (n+isqrt(5*n**2)&-2)-1 # Chai Wah Wu, Aug 16 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Sep 14 2002
EXTENSIONS
More terms from R. J. Mathar, Nov 12 2006
STATUS
approved