[go: up one dir, main page]

login
A072405
Triangle T(n, k) = C(n,k) - C(n-2,k-1) for n >= 3 and T(n, k) = 1 otherwise, read by rows.
16
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 4, 3, 1, 1, 4, 7, 7, 4, 1, 1, 5, 11, 14, 11, 5, 1, 1, 6, 16, 25, 25, 16, 6, 1, 1, 7, 22, 41, 50, 41, 22, 7, 1, 1, 8, 29, 63, 91, 91, 63, 29, 8, 1, 1, 9, 37, 92, 154, 182, 154, 92, 37, 9, 1, 1, 10, 46, 129, 246, 336, 336, 246, 129, 46, 10, 1, 1, 11, 56, 175, 375, 582, 672, 582, 375, 175, 56, 11, 1
OFFSET
0,8
COMMENTS
Starting 1,0,1,1,1,... this is the Riordan array ((1-x+x^2)/(1-x), x/(1-x)). Its diagonal sums are A006355. Its inverse is A106509. - Paul Barry, May 04 2005
FORMULA
T(n, k) = C(n,k) - C(n-2,k-1) for n >= 3 and T(n, k) = 1 otherwise.
T(n, k) = T(n-1, k-1) + T(n-1, k) starting with T(2, 0) = T(2, 1) = T(2, 2) = 1 and T(n, 0) = T(n, n) = 1.
G.f.: (1-x^2*y) / (1 - x*(1+y)). - Ralf Stephan, Jan 31 2005
From G. C. Greubel, Apr 28 2021: (Start)
Sum_{k=0..n} T(n, k) = (n+1)*[n<3] + 3*2^(n-2)*[n>=3].
T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = -1. (End)
EXAMPLE
Rows start as:
1;
1, 1;
1, 1, 1; (key row for starting the recurrence)
1, 2, 2, 1;
1, 3, 4, 3, 1;
1, 4, 7, 7, 4, 1;
1, 5, 11, 14, 11, 5, 1;
MATHEMATICA
t[2, 1] = 1; t[n_, n_] = t[_, 0] = 1; t[n_, k_] := t[n, k] = t[n-1, k-1] + t[n-1, k]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 28 2013, after Ralf Stephan *)
PROG
(Magma)
T:= func< n, k | n lt 3 select 1 else Binomial(n, k) - Binomial(n-2, k-1) >;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 28 2021
(Sage)
def T(n, k): return 1 if n<3 else binomial(n, k) - binomial(n-2, k-1)
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 28 2021
(PARI) A072405(n, k) = if(n>2, binomial(n, k)-binomial(n-2, k-1), 1) \\ M. F. Hasler, Jan 06 2024
CROSSREFS
Row sums give essentially A003945, A007283, or A042950.
Cf. A072406 for number of odd terms in each row.
Cf. A051597, A096646, A122218 (identical for n > 1).
Cf. A007318 (q=0), A072405 (q= -1), A173117 (q=1), A173118 (q=2), A173119 (q=3), A173120 (q=-4).
Sequence in context: A086461 A047089 A122218 * A146565 A115594 A086623
KEYWORD
easy,nonn,tabl
AUTHOR
Henry Bottomley, Jun 16 2002
STATUS
approved