[go: up one dir, main page]

login
A065882
Ultimate modulo 4: right-hand nonzero digit of n when written in base 4.
9
1, 2, 3, 1, 1, 2, 3, 2, 1, 2, 3, 3, 1, 2, 3, 1, 1, 2, 3, 1, 1, 2, 3, 2, 1, 2, 3, 3, 1, 2, 3, 2, 1, 2, 3, 1, 1, 2, 3, 2, 1, 2, 3, 3, 1, 2, 3, 3, 1, 2, 3, 1, 1, 2, 3, 2, 1, 2, 3, 3, 1, 2, 3, 1, 1, 2, 3, 1, 1, 2, 3, 2, 1, 2, 3, 3, 1, 2, 3, 1, 1, 2, 3, 1, 1, 2, 3, 2, 1, 2, 3, 3, 1, 2, 3, 2, 1, 2, 3, 1, 1, 2, 3, 2, 1
OFFSET
1,2
COMMENTS
From Bradley Klee, Sep 12 2015: (Start)
In some guise, this sequence is a linear encoding of the three fixed-point half-hex tilings (cf. Baake & Grimm, Frettlöh). Applying a permutation, morphism x -> 123x becomes x -> x123, which has three fixed points. Applying a partition, morphism x -> x123 becomes x ->{{3,2},{x,1}} or
3 2 3 2
3 1 2 1
3 2 3 2 3 2
x -> x 1 -> x 1 1 1 -> etc.,
which is the substitution rule for the half-hex tiling when the numbers 1,2,3 determine the direction of a dissecting diameter inscribed on each hexagon.
(End)
REFERENCES
M. Baake and U. Grimm, Aperiodic Order Vol. 1, Cambridge University Press, 2013, page 205.
FORMULA
If n mod 4 = 0 then a(n) = a(n/4), otherwise a(n) = n mod 4. a(n) = A065883(n) mod 4.
Fixed point of the morphism: 1 ->1231, 2 ->1232, 3 ->1233, starting from a(1) = 1. Sequence read mod 2 gives A035263. a(n) = A007913(n) mod 4. - Philippe Deléham, Mar 28 2004
G.f. g(x) satisfies g(x) = g(x^4) + (x + 2 x^2 + 3 x^3)/(1 - x^4). - Bradley Klee, Sep 12 2015
EXAMPLE
a(7)=3 and a(112)=3, since 7 is written in base 4 as 13 and 112 as 1300.
MAPLE
f:= proc(n)
local x:=n;
while x mod 4 = 0 do x:= x/4 od:
x mod 4;
end proc;
map(f, [$1..100]); # Robert Israel, Jan 05 2016
MATHEMATICA
Nest[ Flatten[ # /. {1 -> {1, 2, 3, 1}, 2 -> {1, 2, 3, 2}, 3 -> {1, 2, 3, 3}}] &, {1}, 4] (* Robert G. Wilson v, May 07 2005 *)
b[n_] := CoefficientList[Series[
With[{f0 = (x + 2 x^2 + 3 x^3)/(1 - x^4)},
Nest[ (# /. x -> x^4) + f0 &, f0, Ceiling[Log[4, n/3]]]],
{x, 0, n}], x][[2 ;; -1]]; b[100](* Bradley Klee, Sep 12 2015 *)
Table[Mod[n/4^IntegerExponent[n, 4], 4], {n, 1, 120}] (* Clark Kimberling, Oct 19 2016 *)
PROG
(PARI) baseE(x, b)= { local(d, e=0, f=1); while (x>0, d=x%b; x\=b; e+=d*f; f*=10); return(e) } { for (n=1, 1000, a=baseE(n, 4); while (a%10 == 0, a\=10); write("b065882.txt", n, " ", a%10) ) } \\ Harry J. Smith, Nov 03 2009
(PARI) a(n) = (n/4^valuation(n, 4))%4; \\ Joerg Arndt, Sep 13 2015
(Python)
def A065882(n): return (n>>((~n & n-1).bit_length()&-2))&3 # Chai Wah Wu, Aug 21 2023
CROSSREFS
In base 2 this is A000012, base 3 A060236 and base 10 A065881.
Defining relations for g.f. similar to A014577.
Sequence in context: A114280 A123564 A036466 * A276327 A007884 A190593
KEYWORD
base,easy,nonn
AUTHOR
Henry Bottomley, Nov 26 2001
STATUS
approved