OFFSET
1,2
COMMENTS
From Bradley Klee, Sep 12 2015: (Start)
In some guise, this sequence is a linear encoding of the three fixed-point half-hex tilings (cf. Baake & Grimm, Frettlöh). Applying a permutation, morphism x -> 123x becomes x -> x123, which has three fixed points. Applying a partition, morphism x -> x123 becomes x ->{{3,2},{x,1}} or
3 2 3 2
3 1 2 1
3 2 3 2 3 2
x -> x 1 -> x 1 1 1 -> etc.,
which is the substitution rule for the half-hex tiling when the numbers 1,2,3 determine the direction of a dissecting diameter inscribed on each hexagon.
(End)
REFERENCES
M. Baake and U. Grimm, Aperiodic Order Vol. 1, Cambridge University Press, 2013, page 205.
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..1000
D. Frettlöh, Nichtperiodische Pflasterungen mit ganzzahligem Inflationsfaktor, Dissertation, Universität Dortmund, 2002.
FORMULA
If n mod 4 = 0 then a(n) = a(n/4), otherwise a(n) = n mod 4. a(n) = A065883(n) mod 4.
Fixed point of the morphism: 1 ->1231, 2 ->1232, 3 ->1233, starting from a(1) = 1. Sequence read mod 2 gives A035263. a(n) = A007913(n) mod 4. - Philippe Deléham, Mar 28 2004
G.f. g(x) satisfies g(x) = g(x^4) + (x + 2 x^2 + 3 x^3)/(1 - x^4). - Bradley Klee, Sep 12 2015
EXAMPLE
a(7)=3 and a(112)=3, since 7 is written in base 4 as 13 and 112 as 1300.
MAPLE
f:= proc(n)
local x:=n;
while x mod 4 = 0 do x:= x/4 od:
x mod 4;
end proc;
map(f, [$1..100]); # Robert Israel, Jan 05 2016
MATHEMATICA
Nest[ Flatten[ # /. {1 -> {1, 2, 3, 1}, 2 -> {1, 2, 3, 2}, 3 -> {1, 2, 3, 3}}] &, {1}, 4] (* Robert G. Wilson v, May 07 2005 *)
b[n_] := CoefficientList[Series[
With[{f0 = (x + 2 x^2 + 3 x^3)/(1 - x^4)},
Nest[ (# /. x -> x^4) + f0 &, f0, Ceiling[Log[4, n/3]]]],
{x, 0, n}], x][[2 ;; -1]]; b[100](* Bradley Klee, Sep 12 2015 *)
Table[Mod[n/4^IntegerExponent[n, 4], 4], {n, 1, 120}] (* Clark Kimberling, Oct 19 2016 *)
PROG
(PARI) baseE(x, b)= { local(d, e=0, f=1); while (x>0, d=x%b; x\=b; e+=d*f; f*=10); return(e) } { for (n=1, 1000, a=baseE(n, 4); while (a%10 == 0, a\=10); write("b065882.txt", n, " ", a%10) ) } \\ Harry J. Smith, Nov 03 2009
(PARI) a(n) = (n/4^valuation(n, 4))%4; \\ Joerg Arndt, Sep 13 2015
(Python)
def A065882(n): return (n>>((~n & n-1).bit_length()&-2))&3 # Chai Wah Wu, Aug 21 2023
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Henry Bottomley, Nov 26 2001
STATUS
approved