[go: up one dir, main page]

login
A061039
Numerator of 1/9 - 1/n^2.
32
0, 7, 16, 1, 40, 55, 8, 91, 112, 5, 160, 187, 8, 247, 280, 35, 352, 391, 16, 475, 520, 7, 616, 667, 80, 775, 832, 11, 952, 1015, 40, 1147, 1216, 143, 1360, 1435, 56, 1591, 1672, 65, 1840, 1927, 224, 2107, 2200, 85, 2392, 2491, 32, 2695, 2800, 323, 3016, 3127
OFFSET
3,2
COMMENTS
The denominators are given in A061040.
From Paschen spectrum of hydrogen. Wavelengths in hydrogen spectrum are given by Rydberg's formula 1/wavelength = constant*(1/m^2 - 1/n^2).
REFERENCES
J. E. Brady and G. E. Humiston, General Chemistry, 3rd. ed., Wiley; p. 78.
LINKS
J. J. O'Connor and E. F. Robertson, Johannes Robert Rydberg
Eric Weisstein's World of Physics, Balmer Formula
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
FORMULA
a(n) <= n^2 - 9; if n is not divisible by 3 then a(n) = n^2 - 9. - Stefan Steinerberger, Apr 16 2006
a(n) = 3*a(n-27) - 3*a(n-54) + a(n-81) for n > 83. - Colin Barker, Oct 09 2016
a(n) = (n^2 - 9)/9^2 if n == 3 or 24 (mod 27), a(n) = (n^2 - 9)/(3*9) if n == 6 or 24 or 15 or 21 (mod 27), a(n) = (n^2 - 9)/9 if n == 0 (mod 9) and n^2 - 9 otherwise. From the period length 27 sequence gcd(n^2 - 9, 9*n^2). - Wolfdieter Lang, Mar 15 2018
MAPLE
A061039:=n->numer(1/9-1/n^2): seq(A061039(n), n=3..80); # Wesley Ivan Hurt, Apr 12 2017
MATHEMATICA
Table[Numerator[1/9 - 1/n^2], {n, 3, 60}] (* Stefan Steinerberger, Apr 16 2006 *)
PROG
(Haskell)
import Data.Ratio ((%), numerator)
a061039 n = numerator $ 1%9 - 1%n ^ 2 -- Reinhard Zumkeller, Jan 03 2012
(PARI) a(n)=numerator(1/9-1/n^2) \\ Charles R Greathouse IV, Nov 20 2012
(Python)
from math import gcd
def A061039(n): return (n**2-9)//gcd(n**2-9, 9*n**2) # Chai Wah Wu, Apr 02 2021
CROSSREFS
Sequence in context: A087485 A156377 A069526 * A258771 A063593 A070417
KEYWORD
nonn,frac,nice,easy
AUTHOR
N. J. A. Sloane, May 26 2001
STATUS
approved