[go: up one dir, main page]

login
A070417
a(n) = 7^n mod 33.
1
1, 7, 16, 13, 25, 10, 4, 28, 31, 19, 1, 7, 16, 13, 25, 10, 4, 28, 31, 19, 1, 7, 16, 13, 25, 10, 4, 28, 31, 19, 1, 7, 16, 13, 25, 10, 4, 28, 31, 19, 1, 7, 16, 13, 25, 10, 4, 28, 31, 19, 1, 7, 16, 13, 25, 10, 4, 28, 31, 19, 1, 7, 16, 13, 25, 10, 4, 28, 31, 19, 1, 7, 16, 13, 25, 10, 4
OFFSET
0,2
FORMULA
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7) - a(n-8) + a(n-9).
G.f.: ( -1-6*x-10*x^2-3*x^3-22*x^4+12*x^5-16*x^6-12*x^7-19*x^8 ) / ( (x-1)*(1-x+x^2-x^3+x^4)*(1+x+x^2+x^3+x^4) ). (End)
a(n) = a(n-10). - G. C. Greubel, Mar 20 2016
MATHEMATICA
PowerMod[7, Range[0, 80], 33] (* Harvey P. Dale, Mar 04 2015 *)
PROG
(Sage) [power_mod(7, n, 33) for n in range(0, 77)] # Zerinvary Lajos, Nov 27 2009
(PARI) a(n)=lift(Mod(7, 33)^n) \\ Charles R Greathouse IV, Mar 22 2016
(Magma) [Modexp(7, n, 33): n in [0..100]]; // Bruno Berselli, Mar 22 2016
CROSSREFS
Sequence in context: A061039 A258771 A063593 * A101681 A067776 A193688
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 12 2002
STATUS
approved