[go: up one dir, main page]

login
A052186
Number of permutations of [n] with no strong fixed points.
17
1, 0, 1, 3, 14, 77, 497, 3676, 30677, 285335, 2928846, 32903721, 401739797, 5298600772, 75092880273, 1138261010851, 18378421938366, 314928827507717, 5708689036074089, 109145365739197964, 2195167574579322013, 46331767712354136479, 1023970009016490622478
OFFSET
0,4
COMMENTS
A strong fixed point is a fixed point (or splitter) p(k)=k such that p(i) < k for i < k and p(j) > k for j > k.
Equals INVERTi transform of the factorials, n starting with 0. Triangle A144108 has row sums = n! with left border = A052186. - Gary W. Adamson, Sep 11 2008
REFERENCES
Stanley, R. P., Enumerative Combinatorics, Volume 1 (1986), p. 49
LINKS
J.-L. Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
Paul Barry, On a transformation of Riordan moment sequences, arXiv:1802.03443 [math.CO], 2018.
Natasha Blitvić and Einar Steingrímsson, Permutations, moments, measures, arXiv:2001.00280 [math.CO], 2020.
Sergey Kitaev and Philip B. Zhang, Distributions of mesh patterns of short lengths, arXiv:1811.07679 [math.CO], 2018.
J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
Richard J. Martin, and Michael J. Kearney, Integral representation of certain combinatorial recurrences, Combinatorica: 35:3 (2015), 309-315.
V. Strehl, The average number of splitters in a random permutation [Unpublished; included here with the author's permission.]
FORMULA
G.f.: F(x)/(1 + x*F(x)), F(x) = Sum_{n >= 0} n!*x^n.
a(0)=1, a(1)=0, a(n) = (n-2)*a(n-1) + Sum_{k=0..n-1} a(k)*a(n-1-k) + Sum_{k=0..n-2} a(k)*a(n-2-k) if n > 1. - Michael Somos, Oct 11 2006
G.f.: 1/(1-x^2/(1-3x-4x^2/(1-5x-9x^2/(1-7x-16x^2/(1-9x-25x^2/(1-... (continued fraction). - Paul Barry, Dec 09 2009
If p[i] = Stirling1(i,1) and if A is the Hessenberg matrix of order n defined by A[i,j] = p[j-i+1], (i <= j), A[i,j] = -1, (i=j+1), and A[i,j]=0 otherwise, then, for n >= 1, a(n-1) = (-1)^(n-1) det A. - Milan Janjic, May 08 2010
From Gary W. Adamson, Jul 22 2011: (Start)
a(n) = upper left term in (-1)*M^(n+1), M = an infinite square production matrix in which a column of (-1)'s is prepended to Pascal's triangle as follows:
-1, 1, 0, 0, 0, 0, ...
-1, 1, 1, 0, 0, 0, ...
-1, 1, 2, 1, 0, 0, ...
-1, 1, 3, 3, 1, 0, ...
-1, 1, 4, 6, 4, 1, ...
... (End)
G.f.: A(x) = 1/(1/G(0) + x); G(k) = 1 + x*(2*k+1)/(1 - 2*x*(k+1)/(2*x*(k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 29 2011
G.f.: A(x) = 1/x = 1/(1+x)*(1+x/((1+x)*G(0)-x)); G(k) = 1 + x*(k+1) - x*(k+2)/G(k+1); (continued fraction Euler's kind, 1-step ). - Sergei N. Gladkovskii, Dec 29 2011
G.f.: 1/(G(0) + x) where G(k) = 1 - x*(k+1)/(1 - x*(k+1)/G(k+1) ); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 19 2012
G.f.: 1/(1 - W(0)) where W(k) = x*(2*k+1) - 1 - x^2*(k+1)^2/W(k+1); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 19 2012
G.f.: 1/(G(0) + x), where G(k)= 1 + x*k - x*(k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jul 03 2013
a(n) ~ n! * (1 - 2/n + 1/n^2 - 1/n^3 - 9/n^4 - 59/n^5 - 474/n^6 - 4560/n^7 - 50364/n^8 - 625385/n^9 - 8622658/n^10), for coefficients see A256168. - Vaclav Kotesovec, Mar 16 2015
a(n) = n! - Sum_{k=0..n-1} (n-k-1)!*a(k). - Pontus von Brömssen, Jul 10 2021
a(n) + A006932(n) = n!. - Pontus von Brömssen, Jul 10 2021
MAPLE
t1 := add(n!*x^n, n=0..100): F := series(t1/(1+x*t1), x, 100): for i from 0 to 20 do printf(`%d, `, coeff(F, x, i)) od: # Zerinvary Lajos, Mar 22 2009
# second Maple program:
a:= proc(n) a(n):= -`if`(n<0, 1, add(a(n-i-1)*i!, i=0..n)) end:
seq(a(n), n=0..25); # Alois P. Heinz, May 21 2013
MATHEMATICA
m = 20; CoefficientList[ Series[ 1 / (x + 1/Sum[ n!*x^n, {n, 0, m}]), {x, 0, m}], x] (* Jean-François Alcover, Aug 30 2011, after Michael Somos *)
nmax = 25; Rest[CoefficientList[Assuming[Element[x, Reals], Series[-1/(ExpIntegralEi[1/x]/E^(1/x) + 1), {x, 0, nmax+1}]], x]] (* Vaclav Kotesovec, Aug 05 2015 *)
PROG
(PARI) {a(n)=if(n<0, 0, polcoeff( 1/ (x+1/sum(k=0, n, k!*x^k, x*O(x^n))), n))} /* Michael Somos, Oct 11 2006 */
CROSSREFS
Cf. A144108, A000142. - Gary W. Adamson, Sep 11 2008
Column k=0 of A186373.
Sequence in context: A240402 A048779 A369477 * A330518 A228656 A244507
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Feb 04 2000
EXTENSIONS
Better description from James A. Sellers, Mar 13 2000
STATUS
approved