[go: up one dir, main page]

login
A038614
Primes not containing the digit '6'.
12
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 271, 277, 281, 283, 293, 307, 311
OFFSET
1,1
COMMENTS
Subsequence of primes of A052414. - Michel Marcus, Feb 22 2015
Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - Charles R Greathouse IV, Apr 08 2016
LINKS
M. F. Hasler, Numbers avoiding certain digits OEIS wiki, Jan 12 2020.
James Maynard, Primes with restricted digits, arXiv:1604.01041 [math.NT], 2016.
James Maynard and Brady Haran, Primes without a 7, Numberphile video (2019).
FORMULA
Intersection of A000040 and A052414. - M. F. Hasler, Jan 12 2020
a(n) ~ n^(log 10/log 9) log n. - Charles R Greathouse IV, Aug 03 2023
MAPLE
no6:= proc(n) option remember;
n mod 10 <> 6 and procname(floor(n/10))
end proc:
no6(0):= true:
select(no6 and isprime, [2, seq(i, i=3..1000, 2)]); # Robert Israel, Mar 16 2017
MATHEMATICA
Select[Prime[Range[70]], DigitCount[#, 10, 6] == 0 &] (* Vincenzo Librandi, Aug 08 2011 *)
PROG
(Magma) [ p: p in PrimesUpTo(400) | not 6 in Intseq(p) ]; // Bruno Berselli, Aug 08 2011
(PARI) lista(nn)=forprime(p=2, nn, if (!vecsearch(vecsort(digits(p), , 8), 6), print1(p, ", ")); ); \\ Michel Marcus, Feb 22 2015
(PARI)
select( {is_A038614(n)=is_A052414(n)&&isprime(n)}, [1..350]) \\ see A052414
(A038614_upto(n)=select( is_A038614, primes([1, n])))(350) \\ needs the above
next_A038614(n)={until(isprime(n), n=next_A052414(nextprime(n+1)-1)); n}
(A038614_vec(n)=vector(n, i, n=next_A038614(if(i>1, n))))(66) \\ M. F. Hasler, Jan 12 2020
CROSSREFS
Intersection of A000040 (primes) and A052414 (numbers with no digit 6).
Primes having no digit d = 0..9 are A038618, A038603, A038604, A038611, A038612, A038613, this sequence, A038615, A038616, and A038617, respectively.
Sequence in context: A322443 A219697 A078668 * A171047 A050246 A229106
KEYWORD
nonn,easy,base
AUTHOR
Vasiliy Danilov (danilovv(AT)usa.net), Jul 15 1998
EXTENSIONS
Offset corrected by Arkadiusz Wesolowski, Aug 07 2011
STATUS
approved